Posters
Research Posters
:
Poster 141: ExaGeoStatR: Harnessing HPC Capabilities for Large Scale Geospatial Modeling Using R
Event Type
Posters
Research Posters
Registration Categories
TP
EX
EXH
TimeThursday, 21 November 20198:30am - 5pm
LocationE Concourse
DescriptionLarge-scale simulations and parallel computing techniques are becoming essential in Gaussian process calculations to lessen the complexity of geostatistics applications. The log-likelihood function is used in such applications to evaluate the model associated with a given set of measurements in existing n geographic locations. The evaluation of such a function requires O(n^2) memory and O(n^3) computation, which is infeasible for large datasets with existing software tools.

We present ExaGeoStatR, a package for large-scale geostatistics in R that computes the log-likelihood function on shared and distributed-memory, possibly equipped with GPU, using advanced linear algebra techniques. The package provides a high-level abstraction of the underlying architecture while enhancing the R developers' productivity. We demonstrate ExaGeoStatR package by illustrating its implementation details, analyzing its performance on various parallel architectures, and assessing its accuracy using synthetic datasets and a sea surface temperature dataset. The performance evaluation involves spatial datasets with up to 250K observations.
Archive
Back To Top Button