Presentation
Poster 130: Deep Learning-Based Feature-Aware Data Modeling for Complex Physics Simulations
SessionResearch Posters Display
Event Type
Posters
Research Posters
TP
EX
EXH
TimeThursday, 21 November 20198:30am - 5pm
LocationE Concourse
DescriptionData modeling and reduction for in situ is important. Feature-driven methods for in situ data analysis and reduction are a priority for future exascale machines as there are currently very few such methods. We investigate a deep-learning-based workflow that targets in situ data processing using autoencoders. We employ integrated skip connections to obtain higher performance compared to the existing autoencoders. Our experiments demonstrate the initial success of the proposed framework and create optimism for the in situ use case.
Archive