
Large-Batch Training for LSTM and Beyond

Yang You1 (advised by James Demmel)

with James Demmel1, Jonathan Hseu2, Cho-Jui Hsieh2,3, Kurt Keutzer2, Chris Ying2

UC Berkeley1, Google Brain2, UCLA3

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning 1 / 44

Outline

Problems in Distributed Deep Learning

Our Approach

Experimental Results

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning 2 / 44

Sync Mini-Batch SGD (Stochastic Gradient Descent)

1. Take B data points each iteration

2. Compute gradients of weights based on B data points

3. Update the weights: x = x − η × g

x : variables or weights (matrices or tensors)

B: batch size (integer, e.g. 128)

η: learning rate (a scalar, e.g. 0.01)

g : gradients to the loss function (matrices or tensors)

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning 3 / 44

Data-Parallelism SGD

local FP+BP

1 2 4 5 6

local FP+BP local FP+BP

1 2 5 6

partition

average

1. partition the data to all the nodes

2. each node does local Forward Pass
and Backward Pass on its own data

3. each node gets its local gradient

4. get the average of all the local
gradient and send a copy of global
gradient to each node

5. each node uses the global gradient
to update the local weight

3 4

3

update weight update weight update weight

Increase parallelism = increase the global data batch size
Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning 4 / 44

Challenge: can we keep the accuracy after a big speedup?

1000-class ImageNet dataset by AlexNet

58% accuracy in 100 epochs

1000-class ImageNet dataset by ResNet-50

76.3% accuracy in 90 epochs

The final 1% accuracy is very important but very hard to achieve

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning 5 / 44

Difficulties of Large-Batch Training

Large-Batch Training Loses Accuracy
Even the training can be very fast

The solution is very bad

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning 6 / 44

Our early success (large-batch training algorithm: LARS)

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning 7 / 44

How to auto-tune when we scale batch size (B)?

It is annoying to tune parameters every time we change the batch size

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning 8 / 44

How to save energy?

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning 9 / 44

Scaling on Various Models and Applications?

Current Large-Batch Training is focused on CNN-based applications

How about RNN applications like LSTM (Long Short-Term Memory)?

If we fix the dataset (e.g. ImageNet)

Can we scale on different models?

CNN: Convolutional Neural Network

RNN: Recurrent Neural Network

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning 10 / 44

Outline

Problems in Distributed Deep Learning

Our Approach

Experimental Results

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning 11 / 44

Previous effective techniques (recipe of Goyal et al.)

Control the learning rate (η) for large-batch training

Linear Scaling1

if we increase B to kB, then increase η to kη

iterations reduced by k×, # updates reduced by k×
each update should enlarged by k×

Warmup2

start from a small η, increase η in a few epochs

avoid the divergence in the beginning

Manual learning rate decay3

e.g. decay the η by 1/10 at 30th, 60th, 80th epoch

to stabilize the learning in the final stage

1
Alex Krizhevsky, One weird trick for parallelizing convolutional neural networks, 2014 (Google Report)

2
Goyal et al, Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour, 2017 (Facebook Report)

3
He et al, Deep Residual Learning for Image Recognition, CVPR 2017

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning 12 / 44

Previous effective techniques (recipe of Goyal et al.)

An example for 30-epoch MNIST Training

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning 13 / 44

Sqrt Learning Rate (η) Scaling

if we increase B to kB, then we increase η by
√
k times

not proposed by us, but we are the first to make it work

Why do this? to keep the variance of the gradient estimator constant

How to make it work? LEGW (Linear Epoch Gradual Warmup)

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning 14 / 44

After adding optimization 1

An example for 30-epoch MNIST Training

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning 15 / 44

Linear Epoch Gradual Warmup (LEGW or Leg-Warmup)

if we increase B to kB, then increase the warmup epochs by k times

why LEGW works?

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning 16 / 44

Why LEGW works?

gradient direction g = ∇f (x)

the update is x ← x − ηg
how to choose η?

f (x + ∆) ≈ f̃ (x + ∆) := f (x) + ∆T∇f (x) + 1
2∆T∇2f (x)∆

we find ∆ to minimize the approximation function

if we assume ∆ is in the form of −ηg and Hessian is positive definite
along the direction of g (gT∇2f (x)g > 0), then the optimal η∗ is

arg min
η

f̃ (x − ηg) =
1

gT∇2f (x)g/‖g‖2
:=

1

L(x , g)

η∗ is inversely proportional to L(x , g)

it is hard to get L(x , g) since ∇2f (x) involves all the training samples

we approximate L(x , g) using a batch of data and compute the
Hessian-vector product by finite difference

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning 17 / 44

Why LEGW works?

a smaller η∗ needed in the beginning (which implies warmup)
as batch size increases, a longer warmup to cover the peak region

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning 18 / 44

After adding optimization 2

An example for 30-epoch MNIST Training

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning 19 / 44

Learning Rate Decay

Auto-tuning approach: AdaGrad4

use the sum of all historical gradients to decay η (η√∑
t gt�gt

)

easily out of control at runtime by vanishing and exploding gradients

State-of-the-art: discrete staircase decay

a kind of manual tuning
ResNet-50: reduce η by a factor of 10 at 30th, 60th, and 80th epoch5

ResNet-101: reduce η by factor of 10 at 50th and 100th epoch6

Other commonly-used manually-tuning approach

Needs to tune hyper-parameters
Exponential decay
Polynomial decay

4
Duchi et al, Adaptive subgradient methods for online learning and stochastic optimization

5
Goyal et al, Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour, 2017 (Facebook Report)

6
Mu Li, Scaling Distributed Machine Learning with System and Algorithm Co-design

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning 20 / 44

Roller Coaster Decay

an automatic way to decay η

use it after the warmup stage:

η = max{ (T − t)

(1− w/E)× T
×
√

B

B0
η0, η̂}

B0: the batch size of the baseline

B: the target batch size

η0: the learning rate of the baseline

t: the number of iterations we have finished

T : the total number of iterations we need to finish

η̂: lower bound of η

no need to tune η̂, use 10−6 as the default

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning 21 / 44

After adding optimization 3

An example for 30-epoch MNIST Training

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning 22 / 44

Dynamic Per-Layer Stabilized Learning

Previous work: Layer-wise Adaptive Rate Scaling (LARS)7

use the trust ratio (|w |/|g |) to update η at runtime
it builds on top of Momentum SGD
can we apply it to adaptive solvers like RMSprop (Hinton, 2014)?

Adding trust ratio to RMSprop (B=8K)
before: 2.8% error rate; after: 21.8% error rate
reason: some of the ratios are too large while some are too small

7
You et al., Scaling SGD Batch Size to 32K for ImageNet Training, 2017

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning 23 / 44

Dynamic Per-Layer Stabilized Learning

Adding a dynamic lower bound and upper bound to trust ratio

Adding trust ratio with bound to RMSprop (B=8K)

before: 2.8% error rate; after: 1.0% error rate

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning 24 / 44

After adding optimization 4

An example for 30-epoch MNIST Training

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning 25 / 44

Dynamic Adaptive-Tuning Engine (DATE)

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning 26 / 44

Outline

Problems in Distributed Deep Learning

Our Approach

Experimental Results

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning 27 / 44

TPU (Tensor Processing Units)

TPU v2: 180 Tflops; 64 GB High Bandwidth Memory (HBM)
TPU v3: 420 Tflops; 128 GB High Bandwidth Memory (HBM)

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning 28 / 44

TPU Pod

You can configure your own supercomputer!

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning 29 / 44

TPU Pod on Cloud

How to use it on Google Cloud?

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning 30 / 44

Datasets/Applications in our experiments

Table 1: The applications we used to evaluate our method.

Model Dataset Type Samples Metric & Reference

LeNet MNIST Small 60K/10K 99.2% accuracy8

1-layer LSTM MNIST Small 60K/10K 98.7% accuracy9

PTB-small PTB Medium 930K/82K 116 perplexity10

PTB-large PTB Medium 930K/82K 78 perplexity11

GNMT wmt16 Large 3.5M/3K 21.8 BLEU12

ResNet50 ImageNet Large 1.3M/5K 75.3% accuracy13

8https://github.com/tensorflow/models/tree/master/official/mnist
9https://medium.com/machine-learning-algorithms

10https://github.com/tensorflow/models/blob/master/tutorials/rnn/ptb/ptb word lm.py
11https://github.com/tensorflow/models/blob/master/tutorials/rnn/ptb/ptb word lm.py
12https://github.com/mlperf/training/tree/master/rnn translator
13https://github.com/KaimingHe/deep-residual-networks

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning 31 / 44

Scalable Auto-Tuning Approach

Our approach DATE does not need tuning

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning 32 / 44

Scalable Auto-Tuning Approach

Our approach DATE does not need tuning

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning 33 / 44

Scalable Auto-Tuning Approach

Our approach DATE does not need tuning

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning 34 / 44

Scalable Auto-Tuning Approach

Our approach DATE does not need tuning

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning 35 / 44

Scalable Auto-Tuning Approach

Our approach DATE does not need tuning

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning 36 / 44

Energy-Efficient Communication

B of the baseline: 256

B of the large-batch: 32K

the baseline tunes the hyper-parameters 100 times

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning 37 / 44

Scaling on Different Models

76.66% scaling efficiency

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning 38 / 44

Scaling on Different Models

84.76% scaling efficiency

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning 39 / 44

Scaling on Different Models

100.05% scaling efficiency

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning 40 / 44

Scaling on Different Models

92.82% scaling efficiency

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning 41 / 44

Scaling on Different Models

100.08% scaling efficiency

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning 42 / 44

Scaling on Different Models

81.89% scaling efficiency

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning 43 / 44

Our early success (featured by Google product release)

ImageNet/ResNet-50 training in 1 minute (no tuning)

Reduce BERT training time from 3 days to 76 minutes (no tuning)

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning 44 / 44

	Yang You

