Large-Batch Training for LSTM and Beyond

Yang You! (advised by James Demmel)
with James Demmel®, Jonathan Hseu?, Cho-Jui Hsieh®*, Kurt Keutzer?, Chris Ying?

UC Berkeley?, Google Brain?, UCLA3

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning 1/ 44

Outline

@ Problems in Distributed Deep Learning
@ Our Approach

o Experimental Results

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning

nc Mini-Batch tochastic Gradient Descent)

o 1. Take B data points each iteration

@ 2. Compute gradients of weights based on B data points
@ 3. Update the weights: x=x—-n x g

@ x: variables or weights (matrices or tensors)

@ B: batch size (integer, e.g. 128)

@ 1 learning rate (a scalar, e.g. 0.01)

@ g gradients to the loss function (matrices or tensors)

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning

Data-Parallelism SGD

partition ‘
i se

— 2. each node does local Forward Pass
E | E | E | and Backward Pass on its own data
==\ = ==

local FP+BP local FP+BP local FP+BP

1. partition the data to all the nodes

l l 3. each node gets its local gradient

B

average 4. get the average of all the local
gradient and send a copy of global
gradient to each node

| | | 5. each node uses the global gradient
to update the local weight
==t 7==t= ===

update weight update weight update weight

@ Increase parallelism = increase the global data batch size

i (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning

Challenge: can we keep the accuracy after a big speedup?

@ 1000-class ImageNet dataset by AlexNet
e 58% accuracy in 100 epochs

@ 1000-class ImageNet dataset by ResNet-50
e 76.3% accuracy in 90 epochs

“#EY Andrew Ng &
ﬁ @AndrewYNg m v
As speech-recognition accuracy goes from

95% to 99%, we'll go from barely using it to
using all the time!

@ The final 1% accuracy is very important but very hard to achieve

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning 5/ 44

Difficulties of Large-Batch Training

o Large-Batch Training Loses Accuracy
e Even the training can be very fast
@ The solution is very bad

100

—8— Baseline
« —*— Large Batch

i:ul

Accuracy

ao (11

Yang You (advised by James Demmel)

f il
|

10 15 20

Epochs

UC Berkeley Computer Science

25

Fast Deep Learning

6/ 44

Our early success (large-batch training algorithm: LARS)

Top-1 Test Accuracy
o

07

05

Top-1 Test Accuracy

01

AlexNet-BN for ImageNet

oA

—— Batch=512, Baseline
—— Batch=4096, LARS

40 60 80 100
Epochs

ImageNet by AlexNet-BN on 8 P100 GPUs

— Batch Size = 512
Batch Size = 4096

u (advised by James Demmel)

50000 100000 150000 200000 250000
Number of Messages (i.e. latency)

Top-1 Test Accuracy

Top-1 Test Accuracy
o

UC Berkeley Computer Science

ImageNet by AlexNet_BN on 8 P100 GPUs

—— Batch=512
—— Batch=4096

5000 10000 15000 20000
Time

AlexNet for ImageNet on 8 GPUs

WW

— Batch=512, Baseline

1 2 3 1 5 6
Communication Volume among GPUs (Bytes) ~ 1el3

Fast Deep Learni

How to auto-tune when we scale batch size (B)?

Google Translate: I need a batch size of 49152 J

Youtube: 16384 Gmail: I want 32768

ifferent teams need different batch sizes

@ It is annoying to tune parameters every time we change the batch size

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning 8 /44

How to save energy?

Emma Strubell v
@strubell

Are you interested in deep learning for NLP but also
concerned about the CO2 footprint of training? You
should be! Excited to share our work "Energy and Policy
Considerations for Deep Learning in NLP" at
@ACL2019_ltaly! With @ananya__g and
@andrewmeccallum. Preprint coming soon.

Consumption CO2e (Ibs)
Air travel, 1 passenger, NY <>SF 1984
Human life, avg, 1 year 11,023
American life, avg, 1 year 36,156
Car, avg incl. fuel, 1 lifetime 126,000

Training one model

SOTA NLP model (tagging) 13
w/ tuning & experimentation 33,486
Transformer (large) 121
w/ neural architecture search 394,863

8:27 AM - May 17, 2019 - Twitter Web App

1.1K Retweets 2.5K Likes

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning

Scaling on Various Models and Applications?

@ Current Large-Batch Training is focused on CNN-based applications
e How about RNN applications like LSTM (Long Short-Term Memory)?
o If we fix the dataset (e.g. ImageNet)

o Can we scale on different models?

@ CNN: Convolutional Neural Network
@ RNN: Recurrent Neural Network

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning 10 / 44

Outline

@ Problems in Distributed Deep Learning
@ Our Approach

o Experimental Results

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning 11 / 44

Previous effective techniques (recipe of Goyal et al.)

e Control the learning rate (1) for large-batch training
o Linear Scaling!
o if we increase B to kB, then increase 1 to kn

o # iterations reduced by kx, # updates reduced by kx
@ each update should enlarged by kx

e Warmup?
e start from a small 7, increase 7 in a few epochs
@ avoid the divergence in the beginning
e Manual learning rate decay?
o e.g. decay the n by 1/10 at 30th, 60th, 80th epoch

@ to stabilize the learning in the final stage

lAIex Krizhevsky, One weird trick for parallelizing convolutional neural networks, 2014 (Google Report)
2Goyal et al, Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour, 2017 (Facebook Report)
He et al, Deep Residual Learning for Image Recognition, CVPR 2017
Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning 12 / 44

Previous effective techniques (recipe of Goyal et al.)

state-of-the-art

0.010

—— Batch Size = 1K

Batch Size = 2K
—— Batch Size = 4K
—— Batch Size = 8K

0.008

0006

0.004

Learning Rate

0.002

0000

5
Epochs

@ An example for 30-epoch MNIST Training

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning 13 / 44

Sqrt Learning Rate (7)) Scaling

e if we increase B to kB, then we increase 1 by vk times
e not proposed by us, but we are the first to make it work

@ Why do this? to keep the variance of the gradient estimator constant

@ How to make it work? LEGW (Linear Epoch Gradual Warmup)

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning 14 / 44

After adding optimization 1

Sqrt Scaling

0.0035

—— Batch Size = 1K
Batch Size = 2K

Q

E 00030 —— Batch Size = 4K
© —— Batch Size = 8K
g\ 00025

£

ﬂ 00020

L]

—

00015

5
Epochs

@ An example for 30-epoch MNIST Training

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning

Linear Epoch Gradual Warmup (LEGW or Leg-Warmup)

o if we increase B to kB, then increase the warmup epochs by k times

o why LEGW works?

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning 16 / 44

Why LEGW works?

gradient direction g = Vf(x)

the update is x < x —ng

how to choose 7?7

f(x +A) = f(x + A) = f(x) + ATVF(x) + SATV2f(x)A
we find A to minimize the approximation function

if we assume A is in the form of —ng and Hessian is positive definite
along the direction of g (g7 V2f(x)g > 0), then the optimal n* is

1 1
gTVv2f(x)g/llgll? ~ L(x.g)

n* is inversely proportional to L(x, g)

argmin f(x —ng) =
U

it is hard to get L(x,g) since V2f(x) involves all the training samples

we approximate L(x, g) using a batch of data and compute the
Hessian-vector product by finite difference

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning 17 / 44

Why LEGW works?

Momentum SGD, LSTM for MNIST, eps = 0.00001, batch=1k, Ir=0.0661, warmup=2

E]
Zw
J M
Epochs
Momentum SGD, LSTM for MNIST, eps = 0.00001, batch=2k, Ir=0.1325, warmup=4
cl
2=
5

Epochs

Momentum SGD, LSTM for MNIST, eps = 0.00001, batch=4k, Ir=0.265, warmup=8
5. “J
2
B

Epochs.

@ a smaller n* needed in the beginning (which implies warmup)
@ as batch size increases, a longer warmup to cover the peak region

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning

After adding optimization 2

Sqrt Scaling + LEGW

—— Batch Size = 1K

o " Batch Size = 2K
E oooas | —— Batch Size = 4K
e —— Batch Size = 8K
m 00020

c

T 00015

“

g 0.0010

|

5
Epochs

@ An example for 30-epoch MNIST Training

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning 19 / 44

Learning Rate Decay

e Auto-tuning approach: AdaGrad*
o use the sum of all historical gradients to decay n (——L—)

vV Zr 8:tOgt

e easily out of control at runtime by vanishing and exploding gradients

@ State-of-the-art: discrete staircase decay
o a kind of manual tuning
o ResNet-50: reduce 1 by a factor of 10 at 30th, 60th, and 80th epoch®
o ResNet-101: reduce i by factor of 10 at 50th and 100th epoch®

@ Other commonly-used manually-tuning approach
e Needs to tune hyper-parameters
e Exponential decay
e Polynomial decay

4Duchi et al, Adaptive subgradient methods for online learning and stochastic optimization
5Goyal et al, Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour, 2017 (Facebook Report)
Mu Li, Scaling Distributed Machine Learning with System and Algorithm Co-design

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning

Roller Coaster Decay

an automatic way to decay 7

use it after the warmup stage:

_ (T -1 B
n= max{m X \/;Oﬁo,ﬁ}

Bp: the batch size of the baseline

B: the target batch size

no: the learning rate of the baseline

t: the number of iterations we have finished

T: the total number of iterations we need to finish

7]: lower bound of
@ no need to tune 7, use 1079 as the default

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning 21 / 44

After adding optimization 3

Sqrt Scaling + LEGW + Roller Coaster

—— Batch Size = 1K
Batch Size = 2K

Q
E 00025 —— Batch Size = 4K
e« —— Batch Size = 8K
o) 00020
£
00015
£
g 00010
—

5
Epochs

@ An example for 30-epoch MNIST Training

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning 22 / 44

Dynamic Per-Layer Stabilized Learning

@ Previous work: Layer-wise Adaptive Rate Scaling (LARS)’
o use the trust ratio (|w|/|g|) to update n at runtime
e it builds on top of Momentum SGD
e can we apply it to adaptive solvers like RMSprop (Hinton, 2014)?

e Adding trust ratio to RMSprop (B=8K)
o before: 2.8% error rate; after: 21.8% error rate
e reason: some of the ratios are too large while some are too small

Build LARS on top of RMSprop solver

LARS Ratio
O R, N W A O o

N
V)
w
SN
o
)
~
©

LeNet Layer ID

7You et al., Scaling SGD Batch Size to 32K for ImageNet Training, 2017

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning 23 / 44

Dynamic Per-Layer Stabilized Learning

@ Adding a dynamic lower bound and upper bound to trust ratio

e Adding trust ratio with bound to RMSprop (B=38K)

o before: 2.8% error rate; after: 1.0% error rate

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning 24 / 44

After adding optimization 4

Sqrt Scaling + LEGW + Roller Coaster + Dynamic

—— Batch Size = 1K

Batch Size = 2K
—— Batch Size = 4K
Batch Size = 8K

010

= = =
b= =1 =1
= &]

Learning Rate

0.00

@ An example for 30-epoch MNIST Training

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning 25 / 44

Dynamic Adaptive-Tuning Engine (DATE)

Input:
n labeled data points (x;, y;) for training;
Another k labeled data points (X;, §;) for testing;
ie{L,2 ...n}je{l2 . ..k}
A baseline with Batch Size By, learning rate 19, warmup epochs wy and
total number of iterations Iy;
A target large batch size B;
Output:
Trained Model of large batch B;
Test Accuracy of large batch B

B
1 The warmup epochs w = BLUO

2 The number of iterations T = 20/
3 fori €1:Ido
n E = 1B (the current epoch)
5 if E < w then
o] | g B En
7 else
I- -
8 L r]:max{%x B%Uu’lo)
B L = {the number of layers}
w | forjel:Ldo
11 w = {the weight of layer-j}
12 g = {the gradient of layer-j}
13 if ||g]| 0 or [[w||z == 0 then
1 | r = min{max{1.0, lower_limit}, upper_limit}
15 else
16 L r = min{max{ I‘I‘;)‘I“ZZ , lower_limit}, upper_limit}
17 1 = ry (runtime correction)
18 apply_gradient_update(w, g.) based on the optimizer (SGD,
momentum, AdaGrad, or RMSProp)

C Berkeley Computer Science st Deep Learnin

Outline

@ Problems in Distributed Deep Learning
@ Our Approach

o Experimental Results

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning 27 / 44

TPU (Tensor Processing Units)

Core Core Core Core

scalar/ vector scalar/ vector scalar/ scalar/
units wnits vector units vector units

DEEEEEEE EEEEEEEE
HEM | OnEnEnEE EEEEEEEE
8GE OEEEEEEE ENEEEEEE
IEEEEEEE EEEEEEEE
DEEEEEER EEEEEEEE
OEEEEEEE ENEEEEEE
OEEEEEEE EEEEEEEE
OEEEEEEE ENEEEEEE
MXU MU MXU MXU MXU XU
128%128 1281128 128x128 1281128 1281128 128x128

TPU w2 - 4 chips, 2 cores per chip TPU v3 - 4 chips, 2 cores per chip

e TPU v2: 180 Tflops; 64 GB High Bandwidth Memory (HBM)
e TPU v3: 420 Tflops; 128 GB High Bandwidth Memory (HBM)

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning

TPU Pod

= g = |_[..) s =

,‘_*1 m:i‘a4 lh!

TPU v3-512
(512 cores, 16x16 slice)

@ You can configure your own supercomputer!

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning 29 / 44

TPU Pod on Cloud

Google Cloud Storage
(or Cloud Bigtable / etc.)

Cloud TPU Pod

I TPU Binaries, device control, training data
nput Checkpoints / —

training model weights e

data Weights & predictions

Compute Engine

Computational
_@ Graph {gRPC)
Kusarnates Engine

Mchine feaing Tensor
Engine
Services VM or Container Hosts Cloud TPU v2 Pod

@ How to use it on Google Cloud?

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning 30 / 44

Datasets/Applications in our experiments

Table 1: The applications we used to evaluate our method.

[Model [Dataset [Type [Samples [Metric & Reference]
LeNet MNIST Small 60K /10K 99.2% accuracy®
1-layer LSTM MNIST Small 60K/10K 98.7% accuracy®
PTB-small PTB Medium | 930K/82K 116 perplexity™®
PTB-large PTB Medium | 930K/82K 78 perplexity™®
GNMT wmtl6 Large 3.5M/3K 21.8 BLEUT?
ResNet50 ImageNet Large 1.3M/5K 75.3% accuracy®®

Bhttps://github.com /tensorflow /models/tree/master/official /mnist
®https: //medium.com/machine-learning-algorithms

Ohttps://github.com /tensorflow /models/blob/master/tutorials/rnn/ptb /ptb_word _Im.py
Mhttps://github.com /tensorflow /models/blob/master /tutorials/rnn/ptb /ptb_word _Im.py
2https://github.com/mlperf/training/tree/master/rnn_translator
https://github.com/KaimingHe/deep-residual-networks

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning 31/ 44

Scalable Auto-Tuning Approach

Single-layer LSTM for MNIST (25 Epochs)

0.035 Emm DATE
I Default Adam

BN Tuned Adam

0.020
0.015
0.010
0.005
0.000 8192 4096 2048 256 128

1024 512
Batch Size

0.030

o
(=}
N
al

Error Rate

@ Our approach DATE does not need tuning

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning 32 / 44

Scalable Auto-Tuning Approach

PTB-small (13 Epochs)
B DATE

I Default Adam
| BN Tuned Adam
20 40 80 160

Batch Size

=R N
a N Q
S v O

[N
N
ul

]
a1

a1
o

Test Perplexity (lower is better)
5
o

N
a1

o

@ Our approach DATE does not need tuning

Yang You (advised by James Demmel) UC Berkeley Computer Science

320 640

Fast Deep Learning

Scalable Auto-Tuning Approach

PTB-large (55 Epochs)

BN DATE
I Default Adam
| | BBl Tuned Adam
20 40 80 160 320 640

Batch Size

PR e
N O
o o o

[N
o
o

@
(=]

&

Test Perplexity (lower is better)
o
o

n
[=]

o

@ Our approach DATE does not need tuning

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning

Scalable Auto-Tuning Approach

23.0 GNMT (2 Epochs)
BN DATE

25 I Default Adam
i EEE Tuned Adam
g
2 22.0
@
)
g 21.5
[
3
» 21.0
>
]
|
© 205

200 1024 2048 4096

Batch Size

@ Our approach DATE does not need tuning

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning 35/ 44

Scalable Auto-Tuning Approach

ResNet50 for ImageNet (90 Epochs)

0.30
BN DATE (Our Method)

0.28 Il State-of-the-art (Goyal et al)
Qo
& 026
g
0 0.24
c
2
© 022
T
s
- 0.20
-5
o
~ 0.18

0.16

32k 16k 8k 4k 2k 1k
Batch Size

@ Our approach DATE does not need tuning

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning 36 / 44

Energy-Efficient Communication

Communication Energy of ImageNet/ResNet-50

1020

1019
a
1018
1017 l .
1016 NN

Baseline Large Batch LEGW DATE

@ B of the baseline: 256
@ B of the large-batch: 32K

@ the baseline tunes the hyper-parameters 100 times

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning

Scaling on Different Models

ImageNet Training with AlexNet Scaling Efficiency

30| == Perfect Scaling
N DATE

TPUs

@ 76.66% scaling efficiency

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning 38 / 44

Scaling on Different Models

ImageNet Training with Inception-v4 Scaling Efficiency

30| == Perfect Scaling
N DATE

TPUs

@ 84.76% scaling efficiency

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning 39 / 44

Scaling on Different Models

ImageNet Training with MnasNet Scaling Efficiency

HEEm Perfect Scaling
I DATE

@ 100.05% scaling efficiency

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning 40 / 44

Scaling on Different Models

ImageNet Training with MobileNet Scaling Efficiency

HEEm Perfect Scaling
I DATE

TPUs

@ 92.82% scaling efficiency

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning 41 / 44

Scaling on Different Models

ImageNet Training with ResNet-50 Scaling Efficiency

HEEm Perfect Scaling
I DATE

@ 100.08% scaling efficiency

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning 42 / 44

Scaling on Different Models

ImageNet Training with SqueezeNet Scaling Efficiency

30| == Perfect Scaling
N DATE

TPUs

@ 81.89% scaling efficiency

Yang You (advised by James Demmel) UC Berkeley Computer Science Fast Deep Learning 43 / 44

Our early success (featured by Google product release)

Google’s scalable supercomputers for
machine learning, Cloud TPU Pods, are now
publicly available in beta

o ImageNet/ResNet-50 training in 1 minute (no tuning)
@ Reduce BERT training time from 3 days to 76 minutes (no tuning)

Yang You (advised by James Demmel)

UC Berkeley Computer Science

Fast Deep Learning 44 / 44

	Yang You

