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Why Quantum Circuit Simulation?

• Quantum systems: extremely sensitive to environmental effects
• IBM Q 20 Tokyo

• Simulation of quantum circuits
• Validate quantum circuits 
• Quantify the circuit fidelity on real quantum machines
• Assess performance of new quantum algorithms
• Debug quantum program



Quantum Software Debugging

• Statistical assertions for validating patterns and finding bugs in 
quantum programs [ISCA’19]

• On a real quantum computer
• Performing measurement for each assertion

• On a quantum circuit simulation
• Running the quantum program without restarting



Quantum Circuit Simulation by Using Data Compression 

• How to perform quantum circuit simulation?

• Our main idea and implementation

• Evaluation



What is Quantum Circuit Simulation?

• Quantum circuit simulation: quantum state amplitudes.
• Using classical computing systems to simulate quantum computers

• 1-qubit system
• |Ѱ〉 = a0|0〉 + a1|1〉

• 2-qubit system
• |Ѱ〉 = a0|00〉 + a1|01〉 + a2|10〉 + a3|11〉

• n-qubit system
• |Ѱ〉 = a0|0…000〉 + a1|0…001〉 + … + a2

n
-1|1…111〉

• For n-qubit systems, 2n amplitudes

• Simulation: |Ѱt+1〉 = At |Ѱt〉 , for t = 0, …, d at each layer
• At is a unitary matrix
• d is the depth of the circuit

|Ѱ〉 =

a0…000

a1…111

a0…001
…



Challenges of Quantum Circuit Simulation

• For n-qubit systems: 2n amplitudes
• Double-precision complex number: 16 Bytes
• State vector size: 2n+4 Bytes
• People believe it is difficult to classically simulate a 50-qubit quantum computer

• 50-qubit system simulation: 16PB (254 Bytes)

• List of supercomputers and the max size they can simulate

System Memory (PB) Max Qubits 
Summit 2.8 47

Sierra 1.38 46

Sunway TaihuLight 1.3 46

Theta 0.8 45



Full-State Simulation

• Schrödinger Algorithm

• Keep the full state vector in memory

• Space: 2n+4 Bytes

• Circuit depth: High

Year Reference Qubits
2016 qHiPSTER: the quantum high performance software testing environment 42

2017 0.5 petabyte simulation of a 45-qubit quantum circuit 45

2018 Quantum supremacy circuit simulation on Sunway taihuLight 49



Partial State Simulation
• Feynman paths integral

• Calculate one amplitude by following all the paths from the final state to the initial 
state.

• Tensor network contraction
• The time and space cost for contracting such tensor networks is exponential with the 

treewidth of the underlying graphs.
• Circuit depth: Low

Year Reference Qubits Amplitudes Fidelity
2017 Breaking the 49-qubit barrier in the simulation of quantum circuits 49 All 100%

2017 Simulation of low-depth quantum circuits as complex undirected 
graphical models

56 1 -

2018 Classical simulation of intermediate-size quantum circuits 144 1 5%

2018 Quantum supremacy is both closer and farther than it appears 56 1 0.5%

Approximate 
simulation
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Our Simulation

• Goal: For general circuits, increase the simulation size
• Full state simulation
• Trade time for space complexity 

• A new method for Schrödinger algorithm simulation
• Applying data compression to state vectors

• Data compression
• Lossless
• Lossy – approximate simulation



Main Contributions of Our Work

• We provide one more option in the set of tools to scale quantum 
circuit simulation.

• We present a new technique to reduce memory requirements of full-
state simulations by using data compression.

• We implement our general quantum circuit simulation framework on 
the Theta supercomputer at Argonne National Laboratory.



Simulation Overview

• A gate operation:
• Decompress two corresponding blocks to update, and then compress the blocks
• Move to the next two corresponding blocks, repeat until all blocks have been 

updated
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Gate Operation

• |Ѱt+1〉 = At |Ѱt〉

• We do not need to construct the entire A.
• For example, applying a single-qubit gate to the first qubit is equivalent to 

applying U to every pair of amplitudes, whose indices have 0 and 1 in the 
first bit, while all other bits remain the same.
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Single-Qubit Gate

• n qubits, r ranks, and each block contains b amplitudes
• Get the pair of blocks whose indices have 0 and 1 in the target position

0n-1
Amplitude index

log2bn - log2r

Both amplitudes are 
in the same block.

Both amplitudes are in the 
same rank, different blocks.

The pair of amplitudes 
are in the different ranks.

n: # of qubits
r: # of ranks
b: # of amplitudes in a block



Two-Qubit Gate

• In a control-U gate, control qubit position: C-th qubit
• If the C-th qubit is 1, apply U to k-th qubit; otherwise left unmodified. 

0n-1
Amplitude index

log2bn - log2r

For the C-th bit is 0, the whole 
block is left unmodified.

For the C-th bit is 0, the whole 
is left rank unmodified.

For the C-th bit is 0, the 
amplitudes is left unmodified.

n: # of qubits
r: # of ranks
b: # of amplitudes in a block



Compression Techniques

• Lossless: Zstd

• Lossy: SZ 
• Allowing user-controlled loss of accuracy
• Set the error bound, denoted δ
• The decompressed data Diʹ must be in the range [Di (1 − δ), Di (1 + δ)]

• where Diʹ is referred as the decompressed value and Di is the original data value.

• SZ can compress 1-D dataset efficiently.

Simulation Accuracy Compression Ratio



Estimated Fidelity

• Simulation starting with lossless compression
• Larger error à higher compression ratio, lower fidelity



Optimizations

• MCDRAM memory configuration

• SW compressed block record

• Simulation checkpoint



MCDRAM Memory Configuration

• Multi-Channel DRAM
• High bandwidth (~ 4x more than DDR4)
• Low capacity (up to 16GB)
• Packaged with the Knights Landing Silicon (KNL)

• Decompress state vectors to MCDRAM 
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SW Compressed Block Record

• Quantum circuits may have repeated amplitudes.
• A record line

• 64 lines per rank
• OPt == OP && CBx == CB1 && CBy == CB2
à CB’x = CB’1, CB’y = CB’2

CB1 CB2 CB’1 CB’2OP
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Simulation Checkpoint

• Our simulation is allowed to dump full state vectors at any time steps
• Supercomputing systems usually have a 24-hour wall-time limit 

• Compressed format
• Reduce disk I/O time

• Software debugging
• Recover a state vector without re-run the circuit
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Evaluation: Benchmarks

• Grover
• Database search algorithm
• 61, 59, and 47 qubits 

• Random circuit sampling
• Proposed by Google to show the quantum supremacy
• 45 qubits, 42 qubits, 36 qubits, and 35 qubits

• QAOA
• Quantum approximate optimization algorithm
• 43 qubits and 42 qubits

• QFT
• Quantum Fourier Transform
• 36 qubits



Experimental Setup

• Single-node environment
• JLSE system at Argonne
• 64-core Intel Xeon Phi processor 7210 KNL
• 16GB MCDRAM
• 192GB DDR4 memory

• Multi-node environment
• Theta supercomputer at Argonne
• 4,392 nodes
• 64-core Intel Xeon Phi processor 7230 KNL
• 16GB MCDRAM
• 192GB DDR4 memory



Experimental Results

• 61-qubit Grover’s algorithm simulation: 32EB à 768TB
• Our approach can simulate deep circuits, like QFT
• Simulate more qubits with the limited memory resource



Increasing Simulation Size

• Compression ratio: 4.85x ~ 82,600x
• Increasing the number of qubits in the simulation: log2(4.85) ~ log2(82600)
• +2 ~ 16 qubits

• List of supercomputers and the max size they can simulate

System Memory (PB) Max Qubits Max Qubits
Summit 2.8 47 49 - 63

Sierra 1.38 46 48 - 62

Sunway TaihuLight 1.3 46 48 - 62

Theta 0.8 45 47 - 61+2 ~ 16 Q
ubits



Conclusion

• Full-state simulation with data compression

• New method for Schrödinger-style simulation to trade time for space
• Data compression

• The compression ratio results show
• Increase the simulation size by 2 to 16 qubits
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Thank You
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