
Full-State Quantum Circuit Simulation
by Using Data Compression

Xin-Chuan Wu1, Sheng Di2, Emma Maitreyee Dasgupta1, Franck Cappello2, Hal Finkel3, Yuri Alexeev3, Frederic T. Chong1

1Department of Computer Science, University of Chicago
2Mathematics and Computer Science Division, Argonne National Laboratory

3Argonne Leadership Computing Facility, Argonne National Laboratory

Nov. 21

Why Quantum Circuit Simulation?

• Quantum systems: extremely sensitive to environmental effects
• IBM Q 20 Tokyo

• Simulation of quantum circuits
• Validate quantum circuits
• Quantify the circuit fidelity on real quantum machines
• Assess performance of new quantum algorithms
• Debug quantum program

Quantum Software Debugging

• Statistical assertions for validating patterns and finding bugs in
quantum programs [ISCA’19]

• On a real quantum computer
• Performing measurement for each assertion

• On a quantum circuit simulation
• Running the quantum program without restarting

Quantum Circuit Simulation by Using Data Compression

• How to perform quantum circuit simulation?

• Our main idea and implementation

• Evaluation

What is Quantum Circuit Simulation?

• Quantum circuit simulation: quantum state amplitudes.
• Using classical computing systems to simulate quantum computers

• 1-qubit system
• |Ѱ〉 = a0|0〉 + a1|1〉

• 2-qubit system
• |Ѱ〉 = a0|00〉 + a1|01〉 + a2|10〉 + a3|11〉

• n-qubit system
• |Ѱ〉 = a0|0…000〉 + a1|0…001〉 + … + a2

n
-1|1…111〉

• For n-qubit systems, 2n amplitudes

• Simulation: |Ѱt+1〉 = At |Ѱt〉 , for t = 0, …, d at each layer
• At is a unitary matrix
• d is the depth of the circuit

|Ѱ〉 =

a0…000

a1…111

a0…001
…

Challenges of Quantum Circuit Simulation

• For n-qubit systems: 2n amplitudes
• Double-precision complex number: 16 Bytes
• State vector size: 2n+4 Bytes
• People believe it is difficult to classically simulate a 50-qubit quantum computer

• 50-qubit system simulation: 16PB (254 Bytes)

• List of supercomputers and the max size they can simulate

System Memory (PB) Max Qubits
Summit 2.8 47

Sierra 1.38 46

Sunway TaihuLight 1.3 46

Theta 0.8 45

Full-State Simulation

• Schrödinger Algorithm

• Keep the full state vector in memory

• Space: 2n+4 Bytes

• Circuit depth: High

Year Reference Qubits
2016 qHiPSTER: the quantum high performance software testing environment 42

2017 0.5 petabyte simulation of a 45-qubit quantum circuit 45

2018 Quantum supremacy circuit simulation on Sunway taihuLight 49

Partial State Simulation
• Feynman paths integral

• Calculate one amplitude by following all the paths from the final state to the initial
state.

• Tensor network contraction
• The time and space cost for contracting such tensor networks is exponential with the

treewidth of the underlying graphs.
• Circuit depth: Low

Year Reference Qubits Amplitudes Fidelity
2017 Breaking the 49-qubit barrier in the simulation of quantum circuits 49 All 100%

2017 Simulation of low-depth quantum circuits as complex undirected
graphical models

56 1 -

2018 Classical simulation of intermediate-size quantum circuits 144 1 5%

2018 Quantum supremacy is both closer and farther than it appears 56 1 0.5%

Approximate
simulation

Quantum Circuit Simulation by Using Data Compression

• How to perform quantum circuit simulation?

• Our main idea and implementation

• Evaluation

Our Simulation

• Goal: For general circuits, increase the simulation size
• Full state simulation
• Trade time for space complexity

• A new method for Schrödinger algorithm simulation
• Applying data compression to state vectors

• Data compression
• Lossless
• Lossy – approximate simulation

Main Contributions of Our Work

• We provide one more option in the set of tools to scale quantum
circuit simulation.

• We present a new technique to reduce memory requirements of full-
state simulations by using data compression.

• We implement our general quantum circuit simulation framework on
the Theta supercomputer at Argonne National Laboratory.

Simulation Overview

• A gate operation:
• Decompress two corresponding blocks to update, and then compress the blocks
• Move to the next two corresponding blocks, repeat until all blocks have been

updated

Memory

n-qubit State
Vector

Rank 0

State Vector0

Rank 1

State Vector1

…

Rank r-1

State Vectorr-1

Message Passing Interface
(Total r ranks)

Memory

Compressed
Block0

Compressed
Block1

Compressed
Block2

Compressed
Blocknb-1

…

Data Compression
(Total nb blocks)

000..000
000…001
000…010
000…011

111..100
111…101
111…110
111…111

…

Amplitude
index

Vectorx
Decompress

Compress

Vectory

Vector’x Vector’y

State Vector Update

Gate Operation

• |Ѱt+1〉 = At |Ѱt〉

• We do not need to construct the entire A.
• For example, applying a single-qubit gate to the first qubit is equivalent to

applying U to every pair of amplitudes, whose indices have 0 and 1 in the
first bit, while all other bits remain the same.

q0
q1

q0
q1

U

|Ѱ〉 = a10

a00

a11

a01
u11
u21

u12
u22

a00
a01

u11
u21

u12
u22

a10
a11

|Ѱ’〉 = a'10

a’00

a'11

a'01
a’00
a’01

a’10
a’11

=

=

Single-Qubit Gate

• n qubits, r ranks, and each block contains b amplitudes
• Get the pair of blocks whose indices have 0 and 1 in the target position

0n-1
Amplitude index

log2bn - log2r

Both amplitudes are
in the same block.

Both amplitudes are in the
same rank, different blocks.

The pair of amplitudes
are in the different ranks.

n: # of qubits
r: # of ranks
b: # of amplitudes in a block

Two-Qubit Gate

• In a control-U gate, control qubit position: C-th qubit
• If the C-th qubit is 1, apply U to k-th qubit; otherwise left unmodified.

0n-1
Amplitude index

log2bn - log2r

For the C-th bit is 0, the whole
block is left unmodified.

For the C-th bit is 0, the whole
is left rank unmodified.

For the C-th bit is 0, the
amplitudes is left unmodified.

n: # of qubits
r: # of ranks
b: # of amplitudes in a block

Compression Techniques

• Lossless: Zstd

• Lossy: SZ
• Allowing user-controlled loss of accuracy
• Set the error bound, denoted δ
• The decompressed data Diʹ must be in the range [Di (1 − δ), Di (1 + δ)]

• where Diʹ is referred as the decompressed value and Di is the original data value.

• SZ can compress 1-D dataset efficiently.

Simulation Accuracy Compression Ratio

Estimated Fidelity

• Simulation starting with lossless compression
• Larger error à higher compression ratio, lower fidelity

Optimizations

• MCDRAM memory configuration

• SW compressed block record

• Simulation checkpoint

MCDRAM Memory Configuration

• Multi-Channel DRAM
• High bandwidth (~ 4x more than DDR4)
• Low capacity (up to 16GB)
• Packaged with the Knights Landing Silicon (KNL)

• Decompress state vectors to MCDRAM

Memory

n-qubit	 State	
Vector

Rank	0

State	Vector0

Rank	1

State	Vector1

…

Rank	r-1

State	Vectorr-1

Message	Passing	Interface
(Total	r	ranks)

Memory

Compressed	
Block0

Compressed	
Block1

Compressed	
Block2

Compressed	
Blocknb-1

…

Data	Compression
(Total	nb blocks)

000..000
000…001
000…010
000…011

111..100
111…101
111…110
111…111

…

Amplitude	
index

Vectorx
Decompress

Compress

Vectory

Vector’x Vector’y

State	Vector	Update

MCDRAM

SW Compressed Block Record

• Quantum circuits may have repeated amplitudes.
• A record line

• 64 lines per rank
• OPt == OP && CBx == CB1 && CBy == CB2
à CB’x = CB’1, CB’y = CB’2

CB1 CB2 CB’1 CB’2OP

Memory

n-qubit	 State	
Vector

Rank	0

State	Vector0

Rank	1

State	Vector1

…

Rank	r-1

State	Vectorr-1

Message	Passing	Interface
(Total	r	ranks)

Memory

Compressed	
Block0

Compressed	
Block1

Compressed	
Block2

Compressed	
Blocknb-1

…

Data	Compression
(Total	nb blocks)

000..000
000…001
000…010
000…011

111..100
111…101
111…110
111…111

…

Amplitude	
index

Vectorx
Decompress

Compress

Vectory

Vector’x Vector’y

State	Vector	Update

MCDRAMCBC

Simulation Checkpoint

• Our simulation is allowed to dump full state vectors at any time steps
• Supercomputing systems usually have a 24-hour wall-time limit

• Compressed format
• Reduce disk I/O time

• Software debugging
• Recover a state vector without re-run the circuit

Quantum Circuit Simulation by Using Data Compression

• How to perform quantum circuit simulation?

• Our main idea and implementation

• Evaluation

Evaluation: Benchmarks

• Grover
• Database search algorithm
• 61, 59, and 47 qubits

• Random circuit sampling
• Proposed by Google to show the quantum supremacy
• 45 qubits, 42 qubits, 36 qubits, and 35 qubits

• QAOA
• Quantum approximate optimization algorithm
• 43 qubits and 42 qubits

• QFT
• Quantum Fourier Transform
• 36 qubits

Experimental Setup

• Single-node environment
• JLSE system at Argonne
• 64-core Intel Xeon Phi processor 7210 KNL
• 16GB MCDRAM
• 192GB DDR4 memory

• Multi-node environment
• Theta supercomputer at Argonne
• 4,392 nodes
• 64-core Intel Xeon Phi processor 7230 KNL
• 16GB MCDRAM
• 192GB DDR4 memory

Experimental Results

• 61-qubit Grover’s algorithm simulation: 32EB à 768TB
• Our approach can simulate deep circuits, like QFT
• Simulate more qubits with the limited memory resource

Increasing Simulation Size

• Compression ratio: 4.85x ~ 82,600x
• Increasing the number of qubits in the simulation: log2(4.85) ~ log2(82600)
• +2 ~ 16 qubits

• List of supercomputers and the max size they can simulate

System Memory (PB) Max Qubits Max Qubits
Summit 2.8 47 49 - 63

Sierra 1.38 46 48 - 62

Sunway TaihuLight 1.3 46 48 - 62

Theta 0.8 45 47 - 61+2 ~ 16 Q
ubits

Conclusion

• Full-state simulation with data compression

• New method for Schrödinger-style simulation to trade time for space
• Data compression

• The compression ratio results show
• Increase the simulation size by 2 to 16 qubits

Full-State Quantum Circuit Simulation
by Using Data Compression

Xin-Chuan Wu1, Sheng Di2, Emma Maitreyee Dasgupta1, Franck Cappello2, Hal Finkel3, Yuri Alexeev3, Frederic T. Chong1

1Department of Computer Science, University of Chicago
2Mathematics and Computer Science Division, Argonne National Laboratory

3Argonne Leadership Computing Facility, Argonne National Laboratory

Nov. 21

Thank You

Acknowledgment:
This research used resources of the Argonne Leadership Computing Facility, which is a DOE
Office of Science User Facility supported under Contract DE-AC02-06CH11357.
This research was supported by the Exascale Computing Project (ECP), Project Number: 17-
SC-20-SC, a collaborative effort of two DOE organizations the Office of Science and the
National Nuclear Security Administration, responsible for the planning and preparation of a
capable exascale ecosystem, including software, applications, hardware, advanced system
engineering and early testbed platforms, to support the nations exascale computing
imperative.
The material was supported by the U.S. Department of Energy, Office of Science, and
supported by the National Science Foundation under Grant No. 1619253.
This work is funded in part by EPiQC, an NSF Expedition in Computing, under grant CCF-
1730449.
This work is also funded in part by NSF PHY-1818914 and a research gift from Intel.

https://www.epiqc.cs.uchicago.edu/

