iFDK: A Scalable Framework for Instant High-resolution Image Reconstruction

Peng Chen1,3, Mohamed Wahib3, Shinichiro Takizawa3, Ryousei Takano2, Satoshi Matsuoka1,4

1. Tokyo Institute of Technology, Dept. of Mathematical and Computing Science, Tokyo, Japan
2. National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
3. AIST-Tokyo Tech Real World Big-Data Computation Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology
4. RIKEN Center for Computational Science, Hyogo, Japan
Background

• Computed Tomography (CT) is widely used
 • Medical diagnosis
 • Non-invasive inspection
 • Reverse engineering

• Possibility of obtaining high-resolution image
 • Rapid development in CT manufacturing
 • CMOS-based Flat Panel Detector (FPD, X-ray imaging sensor) become larger
 • 2048×2048, 4096×4096, etc
 • Micro focus x-ray become better and cheaper

• Complex computation for 3D image reconstruction
 • Filtering computation (or convolution), Back-projection

• The commonly used resolution: 256^3, 512^3, 1024^3
Problem statement

What happens if we start manipulating \((6k)^3\) and \((8k)^3\) volumes? [1]

Harry E. Martz, Clint M. Logan, Daniel J. Schneberk, and Peter J. Shull

• High-resolution CT image is important but not attainable
 1. Intensive computation
 2. Critical timing demanding for image reconstruction
 3. Huge memory capacity
 • \(2048^3: 32\text{GB}, 4096^3: 256\text{GB}, 8192^3: 2\text{TB}\)

• We use GPU-accelerated supercomputers to solve this problem

• Challenges
 1. GPU is powerful in computation but memory capacity is limited
 2. How to optimize algorithms on GPU?
 3. How to use the heterogeneous architecture (CPUs, GPUs) ?
 4. How to optimally perform inter-process communication by MPI ?
 5. How to achieve high performance and scaling?

Contributions

1. We proposed a **novel** back-projection algorithm
2. We implemented an efficient CUDA kernel for back-projection
3. We take advantage of the heterogeneity of modern systems
 - Use CPU for filtering computation
 - Use GPU for back-projection
4. We proposed a framework to generate high-resolution images
 - High performance
 - High scalability
5. Using up to 2,048 V100 GPUs, the 4K and 8K problems can be solved within 30 seconds and 2 minutes, respectively (including I/O)

\[
\begin{align*}
2K \text{ problem} & : 2048 \times 2048 \times 4096 \rightarrow 2048^3 \\
4K \text{ problem} & : 2048 \times 2048 \times 4096 \rightarrow 4096^3 \\
8K \text{ problem} & : 2048 \times 2048 \times 4096 \rightarrow 8192^3
\end{align*}
\]
Introduction of Compute Tomography

- CT system can generate **3D image** from a set of **2D projections (or images)**
- Cone Beam Compute Tomography (CBCT)
- CBCT Geometry & Parameter

![Diagram of CBCT geometry and trajectory](image1)

![Diagram of 3D volume geometry](image2)

<table>
<thead>
<tr>
<th>Param</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N_u)</td>
<td>the number of 2D projections</td>
</tr>
<tr>
<td>(N_v)</td>
<td>the width and height of a 2D projection, respectively</td>
</tr>
<tr>
<td>(N_p)</td>
<td>the number of voxels in X, Y, Z dimension, respectively</td>
</tr>
</tbody>
</table>

- Reconstruction Problem Definition:
 \[N_u \times N_v \times N_p \rightarrow N_x \times N_y \times N_z\]
- Performance metrics:
 \[GUPS = \frac{N_x \times N_y \times N_z \times N_p}{T}\]
 where \(T\) is execution time in a unit of second.
FDK algorithm

- Presented by Feldkamp, Davis, and Kress in 1984 (35 years ago)
- FDK is also known as the Filtered Back-projection (FBP) algorithm
- FBP method is indispensable in most of the practical CT systems
- Intensive computation for 3D image reconstruction
 - Filtering computation, $O(\log(N)N^2)$
 - Back-projection computation, $O(N^4)$
- FFT primitive is required in Filtering computation
 - Intel IPP, MKL, cuFFT, etc.

![Diagram of FDK algorithm]

Load projections \[\rightarrow\] Filtering computation \[\rightarrow\] Back-projection computation \[\rightarrow\] Store volume

Filtered Back-projection (FBP)
Overview of the Proposed iFDK Framework

Proposed Framework on Multi-nodes with Multi-GPUs
Prior GPU-based work

- Implement filtering processing on GPU
 - cuFFT
- Rely on CUDA 2D-layered texture
 - Texture cache for spatial locality
 - Hardware interpolator (8-bits accuracy)
- Parallelize FDK on GPU without improving the algorithm
 - Arithmetic computation
 - Data locality
Proposed back-projection

Algorithm 2: Back-projection stage.

Input: P, Q, N_p, N_x, N_y, N_z
Output: I
1: $I \leftarrow 0$
2: for $s \in [0, N_p)$ do
3: for $k \in [0, N_x)$ do
4: for $j \in [0, N_y)$ do
5: for $i \in [0, N_z)$ do
6: $[x, y, z]^T \leftarrow P_s \cdot [i, j, k, 1]^T$
7: $f \leftarrow 1/2$
8: $W_{dis} \leftarrow f^2$
9: $[u, v]^T \leftarrow [x, y]^T \cdot f$
10: $I(i, j, k) \leftarrow I(i, j, k) + W_{dis} \cdot \text{interp2}(Q_s, u, v)$
11: end for
12: end for
13: end for
14: end for

Algorithm 4: Proposed Back-projection algorithm. The optimized variables are highlighted in gray color.

Input: $P_t, Q_t, N_p, N_x, N_y, N_z, t \in [0, N_p)$
Output: I
1: $I \leftarrow 0$
2: for $s \in [0, N_p)$ do
3: for $k \in [0, N_x)$ do
4: for $j \in [0, N_y)$ do
5: for $i \in [0, N_z)$ do
6: $l \leftarrow \text{interp2}(Q_t, u, v)$
7: $y \leftarrow (P_t[1], [i, j, k, 1])$
8: $W_{dis} \leftarrow f^2$
9: for $k \in [0, N_z/2)$ do
10: $l(k, j, i) \leftarrow \hat{l}(k, j, i) + W_{dis} \cdot \text{interp2}(\hat{Q}_s, v, u)$
11: $\hat{k} \leftarrow N_z - 1 - k$
12: $\hat{v} \leftarrow N_z - 1 - v$
13: $\hat{l}(k, j, i) \leftarrow \hat{l}(k, j, i) + W_{dis} \cdot \text{interp2}(\hat{Q}_s, \hat{v}, u)$
14: end for
15: end for
16: end for
17: end for

P_s is a matrix of size 3×4

Note: We provide a theoretical prove in the paper of the correctness of the proposed algorithm
Proposed back-projection kernel on GPU

• We re-organize the loops
• We do not rely on texture cache
 • Use L1/L2 cache directly due to the better data locality
 • The locality is improved by using the transposed projections and volume
• We do not use texture interpolator
 • Achieve high precision of float32
• We compute a batch of 32 projections
 • Benefit to in-register accumulation
 • Reduce the global memory access
• We perform thread communication by shuffle intrinsic
 • Simple and efficient
• Detailed CUDA kernel can be found in our paper
An example of Problem Decomposition Scheme

Use 128 GPUs (32 Nodes) to solve a 2K problem.
Input: 4k count of $2k^2$ image, Output: $4k^3$

Input: 2D Projections

Output: 3D volume

Input

```
\begin{array}{ccc}
R_0 & R_1 & R_{31} \\
C_0 & C_1 & C_2 \\
0 & 32 & 64 \\
31 & 63 & 95 \\
\end{array}
```

16 MB/img x4096

11 MB/vol x64

MPI_Allgather

MPI_Reduce
Orchestration and Overlapping in iFDK

- Each MPI rank launches two extra-threads by pthread library
- Filtering thread launches multiple OpenMP threads for filtering computation

(a) Processing pipeline by three threads

(b) Reduce and Store operations by Main Thread
An example of achieved overlapping

- An example of pipeline to solve $2048 \times 2048 \times 4096 \rightarrow 4096^3$ problem
- Use 128 V100 GPUs
- Filtering thread processes 32 projections
- Main thread gathers 1024 projections
- Back-projection thread processes 1024 projections

Filtering thread
Main thread
BP thread

- Exchange data
- Load & Filtering
- MPI-AllGather
- H2D copy
- Back-projection
- D2H copy
- MPI-Reduce
- Store to PFS
An example of MPI_Reduce operation

- Use 16 GPUs to solve $2048 \times 2048 \times 4096 \rightarrow 2048^3$ problem
- Each GPU process a sub-volume of size 8GB
Performance model

• Micro-benchmarking
 • To better understand the characteristics of our system
 • Measure the constant parameters of our system, e.g.
 • Bandwidth of Parallel File System (PFS)
 • Bandwidth of PCIe connector
 • Throughput of MPI primitives

• Building a performance model
 • We can predict the potential peak performance
 • We can justify the scalability of iFDK
 • iFDK scales with the number of GPUs (N_{gpus}) linearly

• Detailed equations can be found in our paper
Evaluation environment

• ABCI supercomputer
 • Constructed and operated by AIST
 • 1,088 computing nodes, 4,352 Tesla V100 GPUs

• Software
 • CentOS 7.4
 • CUDA 9.0
 • Intel library 2018.2.199 (MPI, IPP)
 • RTK (Reconstruction Toolkit) 1.4.0

• Evaluation dataset
 • Computation complexity is independent of the content of projections
 • Use Shepp-Logan phantom
 • Generate projections by RTK library
ABCI Compute Node

FUJITSU PRIMERGY Server (2 servers in 2U)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>Xeon Gold 6148 (27.5M Cache, 2.40 GHz, 20 Core) x2</td>
</tr>
<tr>
<td>GPU</td>
<td>NVIDIA Tesla V100 (SXM2) x4</td>
</tr>
<tr>
<td>Memory</td>
<td>384GiB DDR4 2666MHz RDIMM</td>
</tr>
<tr>
<td>Local Storage</td>
<td>1.6TB NVMe SSD (Intel SSD DC P4600 u2) x1</td>
</tr>
<tr>
<td>Interconnect</td>
<td>InfiniBand EDR x2</td>
</tr>
</tbody>
</table>

Connectivity

- **IB HCA (100Gbps)**
 - Xeon Gold 6148 to Xeon Gold 6148: 10.4GT/s x3 with UPI x3
 - Xeon Gold 6148 to DDR4-2666 32GB x 6: 128GB/s
 - Tesla V100 SXM2 to Tesla V100 SXM2: NVLink2 x2

Networking

- PCIe gen3 x16
 - Xeon Gold 6148 to x48 switch
 - Xeon Gold 6148 to x64 switch

Storage

- NVMe
 - Xeon Gold 6148 to NVMe

Compute

- Intel Xeon Gold 6148 (2 x 6 cores)
- NVIDIA Tesla V100 SXM2 (4 x 100Gbps)
- DDR4-2666 32GB x 6
- NVLink2 x2
Evaluation on back-projection kernels

- A single Tesla V100 GPUs
- **Single precision**
- Up to **1.6 times faster** than baseline

Performance summary
- Better data locality
- Advantaged use of L1 cache
- Efficient data communication

<table>
<thead>
<tr>
<th>FDK problem</th>
<th>Baseline (GUPS)</th>
<th>Ours (GUPS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pixel→voxel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>512²×1k→128³</td>
<td>65.3</td>
<td>118.0</td>
</tr>
<tr>
<td>512²×1k→256³</td>
<td>107.4</td>
<td>188.6</td>
</tr>
<tr>
<td>512²×1k→512³</td>
<td>115.1</td>
<td>206.0</td>
</tr>
<tr>
<td>512²×1k→(1k)³</td>
<td>118.1</td>
<td>211.4</td>
</tr>
<tr>
<td>512²×1k→(1k)²×2k</td>
<td>N/A</td>
<td>212.7</td>
</tr>
<tr>
<td>(1k)³→128³</td>
<td>41.9</td>
<td>27.2</td>
</tr>
<tr>
<td>(1k)³→256³</td>
<td>77.4</td>
<td>83.7</td>
</tr>
<tr>
<td>(1k)³→512³</td>
<td>115.7</td>
<td>190.3</td>
</tr>
<tr>
<td>(1k)³→(1k)³</td>
<td>117.9</td>
<td>205.7</td>
</tr>
<tr>
<td>(1k)³→(1k)²×2k</td>
<td>N/A</td>
<td>207.9</td>
</tr>
<tr>
<td>(2k)²×1k→128³</td>
<td>16.1</td>
<td>7.7</td>
</tr>
<tr>
<td>(2k)²×1k→256³</td>
<td>38.6</td>
<td>24.1</td>
</tr>
<tr>
<td>(2k)²×1k→512³</td>
<td>80.2</td>
<td>81.6</td>
</tr>
<tr>
<td>(2k)²×1k→(1k)³</td>
<td>116.9</td>
<td>186.9</td>
</tr>
<tr>
<td>(2k)²×1k→(1k)²×2k</td>
<td>N/A</td>
<td>198.7</td>
</tr>
</tbody>
</table>

The higher, the better
Weak scalability evaluation

- Using up to 2048 GPUs to evaluate a **4K problem**
- Peak performance is predicted by our performance model
- We achieve outstanding weak scaling

Weak scaling for $2048^2 \times N_p \rightarrow 4096^3 \cdot N_p = 16^* N_{gpu}$
Weak scalability evaluation

- Using up to 2048 GPUs to evaluate a **8K problem**
- Peak performance is predicted by our performance model
- We achieve outstanding weak scaling

Weak scaling for $2048^2 \times N_p \rightarrow 8192^3$. $N_p = 4 \times N_{gpus}$.
Strong scalability evaluation

- Using up to 2048 GPUs to solve a **4K problem**
- Peak performance is predicted by our performance model
- We can achieve about 76% of the peak performance
Strong scalability evaluation

- Using up to 2048 GPUs to solve a **8K problem**
- Peak performance is predicted by our performance model
- We can achieve about 76% of the peak performance

![Graph showing runtime vs. number of GPUs]

Strong scaling for $2048^2 \times 4096 \rightarrow 8192^3$.
Performance

- Extremely high performance
- Higher computational intensity, better scalability
- Bottleneck becomes the data movement
- Over two order of magnitude faster than a single Tesla V100 GPU
- Solve any FDK problems instantaneously

The achieved performance of solving 2K, 4K, and 8K problems
Conclusion

1. We proposed a general FDK algorithm
2. We implemented an efficient CUDA kernel for back-projection
3. We proposed a framework (iFDK) to generate high-resolution image
 • Two characteristics:
 • Pipeline processing
 • Parallel computation
 • Take advantage of the heterogeneity of modern systems
 • Use CPU for filtering computation
 • Use GPU for back-projection
 • Almost ideal Strong and weak scaling
4. Using up to 2,048 V100 GPUs to solve a 4K and 8K problems within 30 seconds and 2 minutes, respectively (including I/O).
Future work

• Research on rendering High-resolution image in HPC
• Research on compressing the High-resolution images
• Provide an image reconstruction service via cloud