Paper
:
Scalable Reinforcement-Learning-Based Neural Architecture Search for Cancer Deep Learning Research
Event Type
Paper
Registration Categories
TP
Tags
Applications
Data Management
Deep Learning
GPUs
Machine Learning
Performance
Scalable Computing
TimeWednesday, 20 November 201911am - 11:30am
DescriptionCancer is a complex disease. There is a growing need for the design and development of data-driven and, in particular, deep learning methods for various tasks such as cancer diagnosis, detection, prognosis, and prediction. For nonimage and nontext cancer data, designing high-performing deep learning models is a time-consuming, trial-and-error task that requires both cancer domain and deep learning expertise. We develop a reinforcement-learning-based neural architecture search to automate predictive model development for a class of representative cancer data. We develop custom building blocks that allow domain experts to incorporate the cancer-data-specific characteristics. We show that our approach discovers deep neural network architectures that have significantly fewer trainable parameters, shorter training time, and accuracy similar to or higher than those of manually designed architectures. We study and demonstrate the scalability of our approach on up to 1,024 Intel Knights Landing nodes of the Theta supercomputer at the Argonne Leadership Computing Facility.
Back To Top Button