A Co-Design Study Of Fusion Whole Device Modeling Using Code Coupling
Event Type
Registration Categories
Big Data
Data Analytics
Data Management
TimeSunday, 17 November 201912:10pm - 12:30pm
DescriptionComplex workflows consisting of multiple simulation and analysis codes running concurrently through in-memory coupling is becoming popular due to inherent advantages in online management of large-scale data, resilience, and the code development process. However, orchestrating such a multi-application workflow to efficiently utilize resources on a heterogeneous architecture is challenging.

In this paper, we present our results with running the Fusion Whole Device Modeling benchmark workflow on Summit, a pre-exascale supercomputer at Oak Ridge National Laboratory. We explore various resource distribution and process placement mechanisms, including sharing compute nodes between processes from separate applications. We show that fine-grained process placement can have a significant impact towards efficient utilization of the compute power of a node on Summit, and conclude that sophisticated tools for performing co-design studies of multi-application workflows can play an important role towards efficient orchestration of such workflows.
Back To Top Button