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1 Introduction
The integration of GPGPUs complicates the security issues in HPC
systems [4]. By exploiting GPU-accelerator based HPC systems,
attackers get the needed high hash rate and avoid paying for the
computing resource and energy bills. Attackers have exploited HPC
systems for bitcoin mining [1], brute force password cracking [2]
and GPU-inflated denial-of-service (DoS) attack [7]. Such HPC
security incidents not only deprive mission-critical and scientific
applications of execution cycles, but also increase the chance for
attackers to steal data, damage systems, and leverage the high
computation and network bandwidth for attacking other sites.

GPU accelerated HPC systems require different security mea-
sures from traditional IT and homogeneous HPC systems. Existing
measures for homogeneous HPC systems detect illicit computa-
tion using CPU execution patterns [3]. Their applications to GPU
accelerated systems are problematic because illicit computations
are offloaded to GPUs without much CPU involvement [5, 6]; a
GPU-side monitoring and detection approach is thus highly desired.

Fortunately, regarding HPC workloads, we can leverage their
unique features and patterns to effectively mitigate risks for (open)
systems and compute nodes. HPC systems often present a small set
of programs with specific resource usage patterns that are more
predictable [4]. Such workloads have a high chance to invoke cer-
tain functions such as linear algebra operations and fast Fourier
transform. They have distinctive microarchitectural activities and
system behaviors that can be monitored, collected, and identified.

In this paper, we present a machine learning framework for
classifying GPGPU workloads based on their microarchitectural
and system behaviors. We achieve over 95% accuracy to detect illicit
workloads with the following contributions: 1. We demonstrate
the feasibility and accuracy of using workload behavioral data
to fingerprint illicit computations and anomalous workloads in
GPU-accelerated HPC systems. 2.We investigate multiple online
and offline machine learning methods for anomalous workload
detection. 3.We evaluate our workload analysis and classification
framework with 83 applications and kernels over 3 generations of
GPU architecture.

2 GPUWorkload Profiling
To correctly classify the running applications, we collect work-
load profiles and behavioral data. As the characteristics of GPU-
accelerated HPC workload have rarely been studied, features that
can best identify the workloads are unknown. To address this issue,
we collect as many features as possible with available profilers.
Specifically, we profile workload execution at both system and
microarchitectural levels, and collect multiple types of workload
behavioral data from multiple sources.

(a) Architectural units utilization

(b) Architectural component throughput
Figure 1: Different patterns for measured performance metrics be-
tween authorized and unauthorized workloads.

2.1 Microarchitectural Events Behavior
Microarchitectural events are activities in hardware including pro-
cessing units, memory, and caches, and can be monitored with
Performance Monitor Counters (PMCs). Prior work shows that
PMC measured events are strong indicators of workload charac-
terization for CPU workloads [3]. Our initial study shows that
PMC are also good indicators to classify GPU workloads. As shown
in Figure 1, for unauthorized programs such as cryptocurrency
and password cracking, hashing functions on integer units are in-
tensively executed. Moreover, they tend to show a much smaller
utilization of the devices in the memory hierarchy including L2
cache, load/store functional units, and DRAM. In addition, they
demonstrate much smaller global load/store throughput compared
to authorized workloads.
2.2 Data Movement Behavior
In addition to architectural events monitoring, we also collect time
series data. Such data complement the cumulative event counts
collected from PMCs, and are particularly suitable for online de-
tection. We collect data movement between host and device over
time. Unauthorized workloads periodically transfer data from host
to device, and barely transfer data from device to host. In contrast,
authorized programs are optimized, offloading larger amount of
data to device, and transfer data back from device. Such differences
in kernel execution time, data transfer direction and volume can be
leveraged to identify illicit computations and anomalous programs.
2.3 Resources Utilization Behavior
Figure 2 shows an example of resource usage traces for linear alge-
bra, data processing, and password cracking applications. Matrix-
multiply consumes significantly higher and stable power compared
to the other two. While radix-sort and password-crack show vary-
ing patterns with similar frequency for both power and memory
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Figure 2: Resource usage traces of different applications.
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Figure 3: Workload classification framework using ML models.

usage, the magnitude for radix-sort are notably larger. These traces
are good features for discriminating unauthorized applications.
3 ML-Based Illicit Workload Detection
The presented profiles suggest that unauthorized workloads are
different from authorized ones and can be discriminated. Here we
explore a data-driven approach that leverages advanced feature
extraction and machine learning methods to automatically detect
illicit workloads. We build a framework illustrated in Figure 3. It
comprises data acquisition, data processing, andworkload classifica-
tion with multiple machine learning (ML) models. We test different
ML models as well as their fusion including SVM, KNN, ANN (i.e.,
MLP), and (fused) RNN. On each architecture, the framework re-
trains all the models with input samples on the same architecture.

As discussed, we collect three types of feature per workload:
performance metrics measured by PMCs, data movement trace, and
resource utilization trace. We use NVIDIA profiler (i.e., nvprof) to
collect target PMCs. When an application contains multiple kernels,
each kernel is treated as an independent data entry. In other words,
we classify execution based on the granularity of kernel rather
than application. We also use nvprof to collect data movement
trace, including the starting time, duration, throughput, source
and destination for each data movement transaction. We rely on
nvidia-smi to track four types of running signals including power
consumption, GPU core utilization, memory footprint, and device
memory bandwidth.
4 Evaluation
To evaluate the classification accuracy, we split the data samples
into three groups: training (50%), validation (25%) and test (25%).
With the selected 16 PMCs, ANN achieves the highest accuracy
(e.g., 98% on P100), while 76% and 88% for KNN and SVM, respec-
tively. Overall, memory access patterns show the most significant
difference among workloads. The execution-related factors such as

Table 1: Classification Accuracy with time-series traces

Data source ML model Accuracy
K40 P100 V100

Data movement trace RNN 90% 93% 92%

Resource utilization trace ANN∗ 89% 88% 89%
RNN 89% 90% 88%

Data movement & re-
source utilization trace RNN 93% 97% 93%

*: Input features extracted by tsfresh from trace for the ANN

SM occupancy, instruction-replay, etc. are also good indicators for
application discrimination.

Table 1 shows the accuracy of multiple ML methods using time-
series traces as inputs. The models trained with data-movement
is slightly more accurate than the other three over all of the three
GPU platforms, implying that data movement implicitly encodes
more application-specific features.

Furthermore, whenmodels are trained using multiple time-series
signals, superior classification accuracy can be achieved. This im-
plies that different signals (e.g., data-movement and resources uti-
lization) can encode different application-specific patterns thus can
complement with each other.
5 Conclusion
In this work we present a machine learning based automatic illicit
workload detection framework for GPU accelerated HPC systems
such as Summit. It uses multi-physics data sources for model train-
ing, feature extraction, and online/offline detection. Various ML-
based classification techniques are applied and evaluated. Their
deployment depend on targeted classification accuracy, cost of data
collection, and whether being online or offline. In addition, we
have several observations: First, detecting illicit workloads based
on performance profiles is feasible. Second, both accumulative and
time-series profiling data can be discriminative workload signa-
tures. Third, various machine learning methods can offer decent
classification accuracy. Comparatively, MLP based ANN demon-
strates the best accuracy over accumulative profiles, while RNNs
show the optimal accuracy over time-series profiles. As the future
work, we will evaluate the proposed detection framework in real
GPU-accelerated HPC systems.
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