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Figure 1: Evaluation of a fiber detection model: (a) raw data and (b) detected fibers in white from cross-section in the middle
of stack; (c) rendering of detected fibers to emphasize discontinuities that are artifact from detection model.

ABSTRACT
There are several automatedmethods to detect objects from grayscale
images. However, materials scientists still lack basic tools to com-
pare different detection results, particularly when working with
microtomography. This paper introduces FibCAM, a convolutional
neural network (CNN)-based method using TensorFlow that al-
lows benchmarking fiber detection algorithms. Our contribution is
three-fold: (a) the design of a computational framework to compare
automated fiber detection models with curated datasets through
classification; (b) lossless data reduction by embedding prior knowl-
edge into data-driven models; (c) a scheme to decompose computa-
tion into embarrassingly parallel processes for future analysis at
scale. Our results show how FibCAM classifies different structures,
and how it illustrates the material’s composition and frequency
distribution of microstructures for improved interpretability of ma-
chine learning models. The proposed algorithms support probing
the specimen content from gigabyte-sized volumes and enable pin-
pointing inconsistencies between real structures known a priori
and results derived from automated detections.
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1 INTRODUCTION
Object detection algorithms often target specific image structures
or corresponding polygons, aim to speed up the screening of large
image datasets, and identify regions of interest before running more
specialized algorithms. For example, a volume cross-section may
contain fiber profiles, which are frequently correlated with the
presence of elliptical shapes surrounded by high contrast coating.
Counting and characterizing fibers are tasks particularly important
on the research of ceramic matrix composites (CMCs) [2, 3]. CMCs
have special properties for aviation manufacturing: it is a relatively
light material that can withstand high temperatures and loads.
Shape and structural properties of such compounds are imaged
through X-rays, generating microtomography (microCT) images,
used for materials quality control [1].

Scientific experiments to stress test CMCs can generate terabyte-
sized datasets [7–9], which demand automated algorithms. Such
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Figure 2: Multiscale image analysis: (a) Raw microCT image cross-section, (b) Maximum projection of volume over z-axis: red
indicates high density of material, (c) Data reduction ( 65%) using mask based on maximum projection, (d) Global view of
CMC specimen and local analysis of fibers, (e) Segmentation result by [6], (f) Manual labeling by human expert, (g) Creation
of labeled datasets: the baseline and crops generated from results in [6] for entire stack.
demand has been met with numerous models for finding “fiber pro-
files" within microCT cross-sections, also known as fiber detection
algorithms [4, 6, 11]. One major challenge is to compare these differ-
ent detection approaches quantitatively, including 3D information.
Fig. 1 shows an example in which fiber detection results look ap-
propriate when observed in 2D, however false fiber discontinuities
permeate the whole result as shown in the 3D rendering. Another
challenge is to process microCT with billions of voxels for discov-
ery of new material configurations, and to achieve autonomous
experimentation in many steps of the scientific process.

2 MATERIALS
The X-ray microtomography images acquired in the investigation
of the microstructure evolution during the matrix impregnation
and curing in unidirectional fiber beds are publicly available at
the Materials Facility website [9]. These are also fully described in
Larson et al [6].

FibCAM experiments used thousands of cross-sections from a
single fiber-reinforced CMC specimen, specifically two modes: the
“raw image stack” and the “ground-truth stack”. The first set con-
tains 2,160 image cross-sections from raw microCT data, while the
second stack contains 1,000 image cross-sections of the segmented

results by [6], as [6] only includes the segmentation results for im-
age slices (159-1158). We ensure that in our experiments the image
slices from the raw stack correspond to the same slices as those in
the segmented stack.

3 METHODS
3.1 Specimen Analysis with CNN
In order to properly access inaccurate detections, FibCAM uses
manual labeling of a human expert as part of the training and
classification of images. Expertise includes the ability to identify
the composition of CMC phases and placement of fibers within a
specimen. We create two datasets containing image crops of fibers
and void spaces via scikit-image [12] (also known as fiber bed
Fig. 2). The baseline dataset is derived from the work of a human
expert, containing 8,814 images.

The segmented crops dataset is composed of 9,195,819 image crops
generated following the results of the fiber model in [9], which
may or may not contain inaccurate detections. To successfully
compare the expert’s manual labeling with the segmented crops
dataset, we train our LeNet-5 [10] based CNN with the baseline
dataset, targeting a binary classification problem (“fiber" vs “non-
fiber"). With a 70% - 30% train-test split we obtain an accuracy
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Table 1: Classification results and augmentation by rotation of the segmented crops dataset.

Crops Accuracy Precision Specificity Sensitivity

Segmented 0.9161 ± 0.0041 0.9726 ± 0.0055 0.9568 ± 0.0082 0.8922 ± 0.0051
Augmented 0.9319 ± 0.0059 0.9429 ± 0.0088 0.9015 ± 0.0145 0.9496 ± 0.0033

of 95.99% and a test loss of 0.1110, which is illustrated in Fig. 3.
Henceforth, we proceed to classify a subset of the segmented crops
dataset, and its augmentation achieved by the rotation of each
image at 90°.

Figure 3: LeNet Performance for the training and validation
of the baseline dataset with matplotib package [5].

Moreover, FibCAMalso contains python codes that automatically
account for the number of fibers and fiber area per slice for the
entire stack. FibCAM’s quantitative analysis emphasizes the large
variation of fiber cross sectional area that goes beyond the expected
fiber diameters specified by the manufacturer (13-20 pixels). Also
notice the fiber count oscillations across the stack, which indicate
inaccuracies in the segmentation model [9] since no fiber breaks
were expected in that CMC sample.

4 RESULTS AND CONCLUSION
The classification performance of the CNN model in Table 1 in
terms of the sensitivity and specificity rates indicate that the fiber
detection model presented in [6] hardly mislabeled non-fibers as
fibers, but still missed a few true fibers. FibCAM experiments pre-
sented 2 main issues: a relatively small training set and limited
generalization to the variety of fiber profiles.

Future work will address training size and variability to improve
the accuracy of our CNN-based benchmarking system during eval-
uation of fiber detection methods, including support to eliminate
false negatives from the results of such models. Because of the par-
allel nature of the CNN fiber-profile prediction algorithm, chunks

of the original microCT volume can be processed separately in dif-
ferent computing cores with minimum communication. In doing so,
we expect to take advantage of multi-core/many-core architectures
available at DOE scientific computing facilities. Further efforts will
explore parallelization using libraries such as joblib and dask.

Figure 4: Fiber segmentation (left) and fiber area counts for
slice #640 (right), also in Fig. 2(e).
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