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Abstract—As deep learning continues to expand into new areas
of application, the demand for efficient use of our HPC resources
increase. For new problem domains, new model architectures are
developed through a neural architecture search (NAS), which
consist of iteratively training many neural networks. To combat
the computational waste and maximize compute efficiency for
NAS, we demonstrate that the use of genetic algorithms with
speciation can be used to both shorten training time and increase
accuracy at each iteration.

Index Terms—Neural Networks, Optimization, Algorithms,
Parallel Computing

1. BACKGROUND

While evolutionary algorithms have previously been used to
train and optimize neural networks [1], [2], these algorithms
have not been widely used in the efficient initialization and
parameterization of neural networks. Efforts in neural archi-
tecture searches are largely focused on model architecture and
training time for a single model [3]. However, little work has
been done to use trained parameters from each run to inform
the initialization of subsequent iterations. Such initialization
is usually performed randomly (i.e., the weights and biases of
the model are initiated at a pseudo-random value).

Following, much of the information created from the already
expensive training of many models (as seen in Fig. 1) is
wasted. This process underutilizes the available information
and, in doing so, overlooks potential compute savings or model
improvements. Therefore, dependent selection of parameter
initializations could allow for benefits in training and merging
models in neural architecture search through the use of readily
available information.

II. METHODS

To evaluate our enhanced NAS training regime, we construct
a relatively small, two layer dense neural network. For data,
we use the “Fashion-MNIST” dataset from Zolando [4].

We developed two workflows, one as a control and one as
a test case. The control workflow (Fig. 2a) trains our neural
network from N different initialization and then choses the
trained model with the lowest loss after K epochs. This is
equivalent to retraining the network from scratch K times to
find a trained model with the best parametrization.

Our experimental workflow (Fig. 2b) begins in the same
manner as the control workflow. However, during the training
(for example, after K/2 epochs), optimization is halted and the
neural networks are selectively filtered by performance. We
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Fig. 1: Neural architecture search become exponentially ex-
pensive with respect to marginal accuracy (Image credit:
Kordik, 2019)

then merge the weights of pairs of two networks using some
predefined cross-over or merge function (Fig. 3). We then re-
initialize N networks with slight random mutations between
them and continue training until we have reached K epochs.

The neural networks were constructed using tensor-
flow.keras and each workflow was run 10 times in order to
ensure robustness of results.

Network Configuration and Spawn ]

, [
[ Network Configuration and Spawn } @ @ @ .
I3 30 &

I Selection Filter

Y N N Y
Parameter
Merge Engine

[ Network Configuration and Spawn ]

§ 4§ § -3
it 4 4 8

[ Evaluate and Return Loss of Fittest NN ]

z
s
=

Train for K/2 epochs

NN-1 NN-2 NN-3 NN-N

Train for K epochs

for K/2 epochs

in

4 &4 4 4

{ Evaluate and Return Loss of Fittest NN ]

Trai

(a) Control, no cross-over. )
(b) Test, with cross-over.

Fig. 2: Generalized control and test workflows used to evaluate
parameter merging.
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Fig. 3: Nllustration of merging network weights

III. RESULTS

Statistical significance was achieved between our test case
and our baseline regardless of whether we used random selec-
tion or parameter means as our crossover function. Between
these two methods, taking the mean of parameters showed
better accuracy, though not significantly so compared to ran-
dom selection. The mean improvement against the baseline
after 100 epochs using the inner mean of parameters was
9%. However, results varied between workflow runs and we
observed differences in effect from an increase in the ending
loss by as much as 5% to a decrease the ending loss as much
as 20% with respect to the control.

There is significant improvement (including a quicker con-
vergence) following a merge of two well-trained networks (Fig
4.). This demonstrates the applicability of this approach to
neural architecture search in that it allows information transfer
from the networks trained throughout the search process.

Though overall results were significant, we have observed
bias in our testing towards partially trained models with
similar parameter values. This aligns with our initial thoughts
regarding the structure and shape of the parameter search space
and demonstrates the need for speciation. More specifically,
for two local optima, it is not unlikely that another local
optimum exists in a location between the two prior values with
respect to the parameter space through which we are merging.

IV. CONCLUSION

The introduction of variation using fitness selection and
crossover allows for quicker convergence and greater accuracy
of certain neural networks. In our tests, we observed cases
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Fig. 4: Mean loss across 10 trial runs comparing the use of
CrOSS-OVer.

where little to no improvement was seen and we observed
cases where error could be reduced as much as 20%. This
seems to indicate dependence on initial condition and on spe-
cific network initializations and randomizations performed at
the beginning of each workflow. In all, we have demonstrated
the significant benefit using this method could have during
the neural architecture search process by reducing the training
time necessary at each generation by more than half and
by reducing loss more quickly than through random network
initializations.
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