Almost Deterministic Work Stealing

SC’19

Shumpei Shiina, Kenjiro Taura
The University of Tokyo

11/20/2019
Overview

- **Work Stealing** is a popular scheduling algorithm for **Task Parallelism**
- However, data locality of **Work Stealing** is not good

→ We propose **Almost Deterministic Work Stealing (ADWS)** to solve this problem

Visualization of task mapping

- Simulation of 2D dam breaking
- Colors of cells represent ranks of workers (blue: 0 → red: 63)

![Fig. Random Work Stealing](image1)

![Fig. ADWS (no steal)](image2)

![Fig. ADWS](image3)
Outline

Introduction
 Motivating Example: Calculation of Particle Interactions
 Task Parallelism and Work Stealing
 Data Locality in Work Stealing

Proposed Method: Almost Deterministic Work Stealing (ADWS)
 Deterministic Task Allocation
 Hierarchical Localized Work Stealing

Evaluation

Related Work

Conclusion
Outline

Introduction
- Motivating Example: Calculation of Particle Interactions
- Task Parallelism and Work Stealing
- Data Locality in Work Stealing

Proposed Method: Almost Deterministic Work Stealing (ADWS)
- Deterministic Task Allocation
- Hierarchical Localized Work Stealing

Evaluation

Related Work

Conclusion
Outline

Introduction
 Motivating Example: Calculation of Particle Interactions
 Task Parallelism and Work Stealing
 Data Locality in Work Stealing

Proposed Method: Almost Deterministic Work Stealing (ADWS)
 Deterministic Task Allocation
 Hierarchical Localized Work Stealing

Evaluation

Related Work

Conclusion
Motivating Example: Calculation of Particle Interactions

2D dambreaking simulation

- **Smoothed Particle Hydrodynamics (SPH)** which calculates short-range forces
- Particles are managed in a **quadtree** (an **octree** in 3D)
- The quadtree is usually **unbalanced**
Parallelization while Traversing the Tree

Sequential Code

```c
particle_interaction(node) {
    if (node is leaf) {
        /* Calculate particle interactions
        * in leaf node */
    } else {
        for (child in node.children) {
            particle_interaction(child);
        }
    }
}
```

Task Parallel Code

```c
particle_interaction(node) {
    if (node is leaf) {
        /* Calculate particle interactions
        * in leaf node */
    } else {
        task_group tg;
        for (child in node.children) {
            /* Spawn a child node as a task (fork) */
            tg.run([&]{ particle_interaction(child); });
        }
        /* Wait for completion of tasks (join) */
        tg.wait();
    }
}
```
Outline

Introduction
- Motivating Example: Calculation of Particle Interactions
- Task Parallelism and Work Stealing
- Data Locality in Work Stealing

Proposed Method: Almost Deterministic Work Stealing (ADWS)
- Deterministic Task Allocation
- Hierarchical Localized Work Stealing

Evaluation

Related Work

Conclusion
Task Parallelism

- Parallel execution model by specifying dependencies between tasks
 - Directed Acyclic Graph (DAG)
- **Fork-join** pattern is frequently used
 - This paper focuses on **nested** fork-join programs

```java
task_group tg;
tg.run([]{ ... });
tg.run([]{ ... });
tg.run([]{ ... });
tg.run([]{ ... });
tg.wait();
```

Fig. TBB-like Task Group Notation

Fig. Directed Acyclic Graph (DAG)
Work Stealing

• Frequently used strategy to schedule task parallel programs
• Each worker has its own task queue, and pushes/pops tasks to/from the queue
• If tasks are exhausted in its local queue, it tries to steal tasks from other workers
• Usually victims are chosen randomly
 • We call it random work stealing

Outline

Introduction
 Motivating Example: Calculation of Particle Interactions
 Task Parallelism and Work Stealing
 Data Locality in Work Stealing

Proposed Method: Almost Deterministic Work Stealing (ADWS)
 Deterministic Task Allocation
 Hierarchical Localized Work Stealing

Evaluation

Related Work

Conclusion
1. Data Locality in DAGs

- Close nodes in DAGs tend to touch close data
 - We want to schedule close nodes in close cores
- Much more important in hierarchical memory architectures
 - What if worker \{0, 1\}, \{2, 3\} are in the same NUMA nodes?

Fig. Good Data Locality

Fig. Bad Data Locality
2. Data Locality in Iterative Programs

• Iterative programs have similar DAGs across iterations
 • e.g., programs that iterate an array over and over
• Data locality exists “vertically” in DAGs
• If scheduling is **deterministic**, data locality is good
Bad Data Locality in Random Work Stealing

Data locality is usually damaged by its **randomness**

1. Data Locality in DAGs
 - Steal strategy is **unaware of memory hierarchy**

2. Data Locality in Iterative Programs
 - Scheduling is **not deterministic** across iterations
Good Data Locality in ADWS

Almost Deterministic Work Stealing (ADWS) improves both data locality

1. Data Locality in DAGs
 • Improved by task mapping that matches task hierarchy with memory hierarchy

2. Data Locality in Iterative Programs
 • Improved by almost deterministic scheduling across iterations
 • ADWS also does dynamic load balancing
Outline

Introduction
 Motivating Example: Calculation of Particle Interactions
 Task Parallelism and Work Stealing
 Data Locality in Work Stealing

Proposed Method: Almost Deterministic Work Stealing (ADWS)
 Deterministic Task Allocation
 Hierarchical Localized Work Stealing

Evaluation

Related Work

Conclusion
ADWS Consists of Two Parts

1. **Deterministic Task Allocation**
 - Initial deterministic task mapping
 - Static partitioning for nested fork-join programs

2. **Hierarchical Localized Work Stealing**
 - Dynamic load balancing
 - Performs work stealing in a hierarchical manner
Task Hierarchy and Memory Hierarchy

Fig. Desired Scheduling of a DAG

Fig. Example of Memory Hierarchy

- Task mapping respects memory hierarchy
 - Close workers touch close nodes in DAGs
 - Without a priori knowledge, it seems impossible
 - What kind of information is needed?
Hints from Programmers

Programmers must specify the amount of work for each task explicitly

- It does not have to be absolute values; relative values are OK
 (ratio of \(w_1, \ldots, w_4 \) to \(w_{\text{all}} \))
- **Rough estimates** are acceptable thanks to dynamic load balancing at runtime
- It is usually hardware-independent and application-specific
 - e.g. the number of particles (next slide)

```c
 task_group tg(w_all);
 tg.run([[...]], w_1);
 tg.run([[...]], w_2);
 tg.run([[...]], w_3);
 tg.run([[...]], w_4);
 tg.wait();
```

where \(w_1 + w_2 + w_3 + w_4 = w_{\text{all}} \)
Specifying Hints is Not So Hard

We can just use the number of particles in particle interactions

Particle Interactions in ADWS

```c
particle_interaction(node) {
    if (node is leaf) {
        /* Calculate particle interactions in leaf node */
    } else {
        task_group tg(node.n_particles);
        for (child in node.children) {
            tg.run([=]{ particle_interaction(child); }, child.n_particles);
        }
        tg.wait();
    }
}
```

- The number of particles is a rough estimate
Outline

Introduction
 Motivating Example: Calculation of Particle Interactions
 Task Parallelism and Work Stealing
 Data Locality in Work Stealing

Proposed Method: Almost Deterministic Work Stealing (ADWS)
 Deterministic Task Allocation
 Hierarchical Localized Work Stealing

Evaluation

Related Work

Conclusion
Overview of Deterministic Task Allocation (1/4)

- Circles: tasks
- Triangles: worker ranges
- Bottom rectangles: workers
- Initially, there is only one task
- We want to distribute it to all workers
Overview of Deterministic Task Allocation (2/4)

• Left task: the spawned task
• Right task: the continuation
• A new task is spawned
• Split the worker range into two parts based on the amount of work specified by programmers
• A task is executed by a worker whose rank is the smallest in its worker range
• Continue to split worker ranges recursively and in parallel
Overview of Deterministic Task Allocation (4/4)

- Task distribution proceeds while workers are executing actual tasks
Algorithm of Deterministic Task Allocation (1/3)

• Workers search for left boundary of their work region
• If worker range is split at worker k
 • Worker i pushes a task to worker k
• If worker range is split at worker i itself
 • Worker i pushes the continuation to local queue
 • Worker i executes the spawned task (left)
• Tasks from other workers are pushed to migration queue
Characteristics of Deterministic Task Allocation

- Tasks are executed from left to right
 - The same order as serial execution
 - **Work-first** scheduling policy
- Workers do not push tasks to a migration queue simultaneously
 - No lock contention while searching
 - Please read the paper for more details
Outline

Introduction
 Motivating Example: Calculation of Particle Interactions
 Task Parallelism and Work Stealing
 Data Locality in Work Stealing

Proposed Method: Almost Deterministic Work Stealing (ADWS)
 Deterministic Task Allocation
 Hierarchical Localized Work Stealing

Evaluation

Related Work

Conclusion
Hierarchical Localized Work Stealing (1/4)

- It depends on **Deterministic Task Allocation**
- Limit the range of steals to inside its “group”
• Move to its parent group when the current task group completes
Hierarchical Localized Work Stealing (3/4)

- It follows partitioning of deterministic task allocation from bottom up
Hierarchical Localized Work Stealing (4/4)

- It becomes equivalent to random work stealing at last
- Ideally, few tasks are ready at this time
Outline

Introduction
 Motivating Example: Calculation of Particle Interactions
 Task Parallelism and Work Stealing
 Data Locality in Work Stealing

Proposed Method: Almost Deterministic Work Stealing (ADWS)
 Deterministic Task Allocation
 Hierarchical Localized Work Stealing

Evaluation

Related Work

Conclusion
Experiment Environment

Implement ADWS on **MassiveThreads**\(^2\), a lightweight threading library

- Skylake 6130 @ 2.1 GHz
- 4 sockets
- 4 NUMA nodes
- 16 x 4 = 64 cores

Performance Evaluation of Particle Interactions

We modified FDPS3 to use nested fork-join parallelism

- Original implementation of FDPS uses GNU OpenMP parallel for (dynamic)

- # of particles: 138968
- 2D dam breaking

Performance Evaluation of Heat2D

Highly **memory-bound** and **iterative** application (5-point stencil)
- It divides a 2D region into four parts recursively
- optimized (SIMD)
- 4096x4096 matrices
- cutoff = 64x64
- single precision
- Constrained WS: 4

Performance Evaluation of Matrix Multiplication

Not iterative application using a simple **divide-and-conquer** algorithm

\[
\begin{pmatrix}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{pmatrix}
= \begin{pmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{pmatrix}
\begin{pmatrix}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{pmatrix}
= \begin{pmatrix}
A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\
A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22}
\end{pmatrix}
\]

- optimized (SIMD)
- 4096x4096 matrices
- cutoff = 128x128
- single precision
- Hierarchical WS: \(^5\)

Introduction

Motivating Example: Calculation of Particle Interactions
Task Parallelism and Work Stealing
Data Locality in Work Stealing

Proposed Method: Almost Deterministic Work Stealing (ADWS)
Deterministic Task Allocation
Hierarchical Localized Work Stealing

Evaluation

Related Work

Conclusion
Comparison to Related Work

• **Optimize scheduling by using metrics of previous iterations**
 - ADWS is not specific to iterative programs

• **Optimize scheduling by using users’ hardware-specific hints**
 - ADWS requires users’ hints, but they are not hardware-specific

• **Optimize a steal strategy based on memory hierarchy without hints**
 - It does not optimize data locality of iterative programs

Outline

Introduction
 Motivating Example: Calculation of Particle Interactions
 Task Parallelism and Work Stealing
 Data Locality in Work Stealing

Proposed Method: Almost Deterministic Work Stealing (ADWS)
 Deterministic Task Allocation
 Hierarchical Localized Work Stealing

Evaluation

Related Work

Conclusion
Conclusion

We have presented Almost Deterministic Work Stealing (ADWS), which:

• focuses on **nested fork-join parallelism**
• improves **data locality** in work stealing
 • memory hierarchy-aware deterministic scheduling

ADWS requires users’ hints, but

• it is **hardware-independent** and application-specific
• it keeps **portability** of code

ADWS can speedup task parallel programs while keeping productivity
Future Work

• Automatic work estimation for iterative programs
 • Programmers do not have to specify hints
• More benchmarks
• Combine with cache-aware scheduling like CATS12