Scalable Simulation of Realistic Volume
Fraction Red Blood Cell Flows through
Vascular Networks

Outline

* Motivation
* Formulation, Numerics, Algorithms

e Results

Goal: Simulate red blood cell flow in capillaries

e |[mportant biophysical
phenomena:

® vasoconstriction
e vasodilation

https://en.wikipedia.org/wiki/Vasodilation

https://en.wikipedia.org/wiki/Vasodilation

Goal: Simulate red blood cell flow in capillaries

e |[mportant biophysical
phenomena:

e vasoconstriction
e vasodilation
e blood clotting

shutterstock.com

http://shutterstock.com

Goal: Simulate red blood cell flow in capillaries

a)

e Important biophysical cats
phenomena:

® vasoconstriction

e vasodilation

e blood clotting

e microfluidic device design

Drops, vesicles
and red blood
cells:
Deformability
and behavior
under flow -
Magalie Faivre,
Thesis 2006

There are many free space codes...

Parallel contact-aware
simulations of deformable
particles in 3D Stokes flow,
L. Lu et. al., arxiv 2018

There are many free space codes...

“Petascale direct
numerical
simulation of
blood flow on
200k cores and
heterogeneous
architectures.”
Rahimian et. al.,
SC 2010

... but few with boundaries

* Either:
— Large scale, low-order accurate

— Small scale, high-order accurate

Contribution

* Parallel Stokes boundary solver on complex
geometry

* Parallel collision handling between RBCs +
blood vessel

e Scaled to ~35k cores (resource limited)

Outline

* Motivation
* Formulation, Numerics, Algorithms

e Results

Stokes flow on RBCs

pAu(x)+ Vp(x) =F(x), A-u=0, xe€
u(x) = g(x), x € 0f)
Xt = u , X € Yi

=%/

fly) =1, +1

Collision handling is hard!

| C:Q ‘OQ““

Q009 O @ ()
QQ0.0QO.Q
JOX ISR 0/(&/ \

Collision handling is hard!

* Small time steps
* Fine spatial discretization

* Too expensive
 Maintain accurate physics?

* requires solving non-linear complementarity
problem (NCP)

Collision handling is harder in parallel!

* Need to detect colliding geometry on other
processors

* Need scalable algorithms to solve resulting
non-linear complementarity problem

Stokes flow on RBCs

pAu(x)+ Vp(x) =F(x), A-u=0, xe€
u(x) = g(x), x € 0f)
Xt = u , X € Yi

=3/ 1w
ﬂw=g+ﬁ{@

fc : [Harmon et. al. 2011]: space-time interference volume

Boundary Integral Formulation
u— Z u’ 4+ ul
* RBCs: i

u%(x):[WS(X—Y)f(Y)dY» S() = = <1+r®r)

- Sum \ r I3

e Existing methods: [Veerapeneni et. al. JCP 2011],
[Malhotra et. al. arxiv 2017, Lu et. al. arxiv 2018]

Boundary Integral Formulation

u— Z u’ 4+ ul
0S(r)

 \essel:

/DX— y)dy, D(r)= 3
n

BIE Representation + Discretization

* RBCs:
e Spherical harmonic representation
* Semi-implicit time stepping

e Vessel:
* Bezier polynomial patches

* Nystrom discretization with spectrally accurate
guadrature rules

Evaluating velocity

u"(x) = [Dix—y)o(y)dy
W)= 3" [Dlx=y)oly)dy

N q
llF (X) > Sj Sj D(X — yz)qb(yz)wz -~ N-body sum

i=1 j=1

N-body sum —> FMM

e Accelerate with fast multipole method (FMM)
* All hydrodynamic interaction through FMMs

 Many high performance parallel FMMs exist; we
choose PVFMM [Malhotra et. al., CCP 2015]

BIE: Pros and Cons

Pros:

e Linear Complexity

e High-order accuracy
e Dimension reduction
e No volume mesh

e Parallel scalability

Cons:
e Requires singular integration
e Only valid for Re << 1 (i.e. Stokes)

Challenges for Parallel RBC Simulation

* Evaluate fluid velocity in parallel (FMM)
* Parallel singular quadrature

e Guarantee collision-free state across non-local
geometry

Singular quadrature

Upsample boundary data
Find closest point

(upsampled quadrature points

Construct check points *

~—.,

Evaluate velocity at "
check points

Extrapolate velocity

Closest point

Parallel contact-
aware simulations
of deformable
particles in 3D
Stokes flow, Lu et.
al., arxiv 2018

Step 1: Form spatial hash

Step 2: Compute bounding box

Step 3: Sample bounding box

Step 4: Hash bounding box samples

Step 5: Parallel sort + scatter

Repeat for all patches...

B

.
~

Repeat for all patches...
) 7

.J’ .../..

> toefy

T
S

Repeat for all patches...

ﬁDQDD@Lﬁ
TN kA

Repeat for all patches...

EnEEnE BEE
EEEEE BN

eeeeeeeee

distributed
mmmmmm

...........

tance locally

IS

>

Step 6: Comp

Collision handling

L. Lu et. al. Parallel contact-
aware simulations of
deformable particles in 3D
Stokes flow, arxiv 2018

Step 1: Form a spatial hash

-~
e S
’ \
.
» 1
-=7 Y
4 4
4 -
-
1 P
\ ,’
N\
\-ﬂl

Step 2: Compute space-time bounding boxes

\\
PN
’ \
. \
\ 1
. \
~ \Y
\ \
\‘ ~.
\
! 1
')
A ’
\~_,

Step 3: Sample bounding boxes

Step 4: Hash samples and parallel sort

Step 5: Iteratively solve NCP; repeat until collision-free

* Follow [Lu et. al. arxiv 2018]

* Solve NCP by a sequence of parallel linear
complementarity problems (LCPs)

Outline

* Motivation
* Formulation, Numerics, Algorithms

 Results

Setup

* Stampede?2 at TACC

» Skylake (SKX): dual socket 24 core 2.1 GHz CPU,
192GB RAM

e Knights Landing (KNL): 68 core 1.4 GHz CPU, 96
GB RAM + 16 GB high-speed MCDRAM

Strong scaling

Strong scaling

107
Skylake B coL EBIE-solve HBIE-FMM

0 other-FMM [oOther
40,960 RBCs with 40,960 patch blood
vessel

~89 million DOF for RBCs
~15 million DOF for vessel

15.7x speed-up from 384 to 12288
cores

o
foN
‘

e
IS

wall-time X CPU cores (bar) —

49% overall parallel efficiency 0.2 f

66% efficiency of collision handling +

singular integration 384 768 1536 3072 6144 12288

CPU cores —

Weak scaling

Weak Scaling: SKX

* Skylake

* 71% overall parallel
efficiency

* 60% efficiency of collision
handling + singular
Integration

time —

wall

1.5 x

—_
.
T

0.5 |

-10*

B coL B BIE-solve B BIE-FMM
O other-FMM [other

48 192 768 3072 12288
CPU cores —

Weak Scaling: KNL

Skylake

47% overall parallel efficiency B coL BpEsove WBIE-FMM
6,000 | Lother-FMM [other

43% efficiency of collision handling
+ singular integration

5,000 |

4,000 -

Largest simulation: 1 million RBCs

and 2 million patches on vessel H
3 billion total DOF i i
Maintain collision-free state among |

. 136 544

4.1 billion surface elements 2176 8704 34816

CPU cores —

wall-time —

Dhairya Malhotra

Credits

e 4
Libin Lu

w»™

Michael Shelley

Georg Stadler

