
A Runtime Approach for Dynamic Load Balancing of
OpenMP Parallel Loops in LLVM

Jonas H. Müller Korndörfer,
Florina M. Ciorba,

Akan Yilmaz
Department of Mathematics & Computer
Science, University of Basel, Switzerland

firstname.lastname@unibas.ch

Christian Iwainsky
Technische Universität Darmstadt,

Germany

christian.iwainsky@sc.tu-darmstadt.de

Johannes Doerfert,
Hal Finkel

Argonne National Laboratory

Lemont, IL, USA
[jdoerfert,hfinkel]@anl.gov

Vivek Kale
Brookhaven National Laboratory

Upton, NY, USA
vkale@bnl.gov

Michael Klemm
Intel Deutschland GmbH

Feldkirchen, Germany
michael.klemm@intel.com

ABSTRACT

Load imbalance is the major source of performance degrada-
tion in computationally-intensive applications that frequently
consist of parallel loops. Efficient scheduling of parallel loops
can improve the performance of such programs. OpenMP is
the de-facto standard for parallel programming on shared-
memory systems. The current OpenMP specification provides
only three choices for loop scheduling which are insufficient
in scenarios with irregular loops, system-induced interfer-
ence, or both. Therefore, this work augments the LLVM
implementation of the OpenMP runtime library with eleven
state-of-the-art plus three new and ready-to-use scheduling
techniques. We tested the existing and the added loop sched-
uling strategies on several applications from the NAS, SPEC
OMP 2012, and CORAL-2 benchmark suites. The experi-
mental results show that each newly implemented scheduling
technique outperforms the other in certain application and
system configurations. We measured performance gains of
up to 6% compared to the fastest previously available sched-
uling techniques. This work establishes the importance of
beyond-standard scheduling options in OpenMP for the ben-
efit of evolving applications executing on evolving multicore
architectures.

KEYWORDS

Scheduling; dynamic load balancing; OpenMP; LLVM.

1 INTRODUCTION

Parallel and distributed applications in science, engineer-
ing, and industry are complex, large, and generally, exhibit
irregular and non-deterministic behavior. Moreover, their per-
formance frequently relies on computationally-intensive large
parallel loops. High performance computing (HPC) platforms
are increasingly complex, large, heterogeneous, and exhibit
massive and diverse parallelism. The execution of such appli-
cations on existing HPC platforms can suffer from numerous
performance degrading phenomena.

Load imbalance is the major source of performance degra-
dation in computationally-intensive applications [1–4]. On
shared-memory systems, load imbalance can result from the
uneven assignment of work to threads, unequal allocation of

threads to processors, or system heterogeneity. The former
can be mitigated via scheduling techniques that distribute
the work in different manners. It is well known that no single
loop scheduling technique can address all sources of load im-
balance to effectively optimize the performance of all parallel
applications executing on various systems. This poses the
challenge of identifying the most suitable scheduling strategy
for a given application-system tuple. OpenMP is the de-facto
parallel programming approach for loops on shared-memory
systems offering three scheduling options for work sharing
loops: static, guided, and dynamic. These options are insuf-
ficient for certain applications-system tuples for which other
scheduling strategies can improve performance. Therefore,
more scheduling techniques are needed in OpenMP. In this
work, we extend the LLVM (llvm.org) OpenMP runtime li-
brary (RTL), libomp, by eleven state-of-the-art scheduling
techniques plus three improved implementations.

We chose the LLVM implementation as it is open-source
and widely used in many production and scientific parallel
codes. Furthermore, libomp is highly compatible with other
implementations, such as Intel, GCC, and PGI. The state-of-
the-art scheduling techniques added are: Fixed Size Chunk-
ing (fsc), Factoring (fac), Factoring2 (fac2), Taper (tap),
Weighted Factoring (wf), Bold (bold), Adaptive Weighted
Factoring with its 4 variants (awf b, awf c, awf d, and

awf e), and Adaptive Factoring (af). We also made certain
implementation-related improvements to the fac, fac2, and
af techniques, hereafter denoted by the suffix “ a”. We con-
ducted experiments and present in the accompanying poster
the results of executing benchmarks from the NAS, SPEC
OMP 2012, and CORAL-2 suites with the three standard
(static, guided, and dynamic), one non-standard (trapezoidal),
and the eleven (plus the three improved implementations)
added scheduling techniques.

2 LOOP SCHEDULING IN LLVM
OPENMP RTL

Figure 1 illustrates the scheduling process in the LLVM
OpenMP RTL. Libomp uses three main functions to per-
form the scheduling of iterations from a loop onto threads:
init(), next(), and finish(). The scheduling techniques

llvm.org


SC19, 2019 J. H. Müller Korndörfer, F. M. Ciorba, A. Yilmaz, C. Iwainsky, J. Doerfert, H. Finkel, V. Kale, and M. Klemm

are implemented in kmp dispatch.cpp. The remaining files
are needed for the initialization of required environment vari-
ables and to make the OpenMP runtime system (RTS) aware
of the eleven plus three newly introduced techniques. Upon
initialization, each thread enters the init() function inside
kmp dispatch.cpp whenever a pragma omp parallel for

with the clause schedule (runtime) is encountered inside
the application. This function initializes the scheduling tech-
nique exported to the environment variable OMP SCHEDULE.
The next() function is called by every thread to calculate
its chunk of iterations following the selected scheduling strat-
egy. Finally, when all loop iterations have been scheduled,
every thread calls the finish() function which cleans the
environment.

Implements the 
scheduling techniques

Processing unit

Chunk of iterations

Figure 1: Scheduling process in libomp: kmp dispatch.cpp
implements all scheduling algorithms. The other files are used
to select, recognize, and initialize variables for the techniques.

3 EXPERIMENTS AND RESULTS

The experiments were conducted on a system which contains
two different node types in separate partitions: Xeon and
KNL. A node in the Xeon partition is a 10-way dual-socket
Intel Xeon Broadwell E5-2640 processor. A node in the KNL
partition contains a 64-way Intel Xeon Phi Knights Landing
processor. We used two pinning strategies denoted pin1 and
pin2, which are described in the accompanying poster. All
experiments were executed at least 30 times.

Compiler vs. Runtime Library Scheduling

Figure 2 shows the performance of the three OpenMP stan-
dard scheduling strategies called via the compiler vs. the
runtime library for the well-known EPCC benchmark 1. The
results show that the overhead of calling these scheduling
strategies through the LLVM OpenMP RTL is minimal com-
pared to the standard use via the compiler and that it appears
only for dynamic which makes numerous RTL calls.

Added Scheduling Strategies vs. Standard

The performance of the CORAL-2 Quicksilver benchmark,
with 10 million particles, on a node from the Xeon partition
using pin2 is shown in Figure 3. One can see that wf outper-
forms the existing standard scheduling techniques (static,
dynamic, guided). The performance results for the other
benchmarks from the SPEC2012, NAS, and CORAL-2 suites
can be found in the accompanying poster.

1www.epcc.ed.ac.uk

st
at

ic

dy
na

m
ic

dy
na

m
ic,

64

gu
id

ed

Scheduling technique

0

2000

4000

6000

8000

10000

12000

Ti
m

e 
(

s)

EPCC Schedbench Compiler vs Runtime | xeon | pin1
Compiler
Runtime

Figure 2: Performance results for executing the EPCC
benchmarks using standard OpenMP scheduling strategies
via the compiler vs. the LLVM RTL.

approx. 6% improvement

Figure 3: Performance results for executing the CORAL-2
Quicksilver benchmark with 10 million particles on a Xeon
node using pin2 using the 3 standard vs. the 11+3 added
scheduling techniques.

4 CONCLUSION AND FUTURE WORK

The performance of OpenMP applications can improve be-
yond the performance delivered by the standard schedule

clause parameters. These improved performance gains depend,
as shown by the experiments, on the degree of load imbalance
during the execution of the application on particular systems,
which can be mitigated to various extents by the eleven plus
three additional scheduling strategies implemented in the
LLVM OpenMP runtime library.

The present work establishes the importance and high-
lights the need for beyond-standard scheduling options in
OpenMP. Building upon this and the recent work [1–4], the
immediate future work is to develop an interface between
the user and the compiler to allow users to define custom
scheduling techniques, specialized to the applications’ needs.

ACKNOWLEDGMENT
This work is in part supported by the Swiss National Science Foun-
dation in the context of the “Multi-level Scheduling in Large Scale
High Performance Computers” (MLS) grant, number 169123, and by
the Exascale Computing Project (17-SC-20-SC), a joint project of the
U.S. Department of Energy’s Office of Science and National Nuclear
Security Administration. improved

www.epcc.ed.ac.uk


A Runtime Approach for Dynamic Load Balancing of
OpenMP Parallel Loops in LLVM SC19, 2019

REFERENCES
[1] S. Bak, Y. Guo, P. Balaji, and V. Sarkar. 2019. Optimized

Execution of Parallel Loops via User-Defined Scheduling Policies.
In Proceedings of the 48th International Conference on Parallel
Processing (ICPP 2019). ACM, New York, NY, USA, Article 38,
10 pages.

[2] F. M. Ciorba, C. Iwainsky, and P. Buder. 2018. OpenMP Loop
Scheduling Revisited: Making a Case for More Schedules. In
Proceedings of the 2018 International Workshop on OpenMP
(iWomp 2018). Barcelona.

[3] V. Kale, C. Iwainsky, M. Klemm, J. H. Korndörfer Müller, and
F. Ciorba. 2019. Towards A Standard Interface for User-Defined
Scheduling in OpenMP. In Proceedings of the 2019 International
Workshop on OpenMP (iWomp 2019). New Zealand.

[4] F. Kasielke, R. Tschüter, M. Velten, F. M. Ciorba, C. Iwainsky,
and I. Banicescu. 2019. Exploring Loop Scheduling Enhancements
in OpenMP: An LLVM Case Study. In Proceedings of the 18th In-
ternational Symposium on Parallel and Distributed Computing
(ISPDC 2019). Amsterdam.


	Abstract
	1 Introduction
	2 Loop Scheduling in LLVM OpenMP RTL
	3 Experiments and Results
	4 Conclusion and Future Work
	References



