
Eithne: A framework for benchmarking micro-core accelerators
Maurice Jamieson

EPCC
University of Edinburgh

Edinburgh, UK
maurice.jamieson@ed.ac.uk

Nick Brown
EPCC

University of Edinburgh
Edinburgh, UK

n.brown@epcc.ed.ac.uk

1 INTRODUCTION
The free lunch is over and the HPC community is acutely aware of
the challenges that the end of Moore’s Law and Dennard scaling
[4] impose on the implementation of exascale architectures due to
the end of significant generational performance improvements of
traditional processor designs, such as x86 [5]. Power consumption
and energy efficiency is also a major concern when scaling the core
count of traditional CPU designs. Therefore, other technologies
need to be investigated, with micro-cores and FPGAs, which are
somewhat related, being considered by the community.

Micro-core architectures look to address this issue by implement-
ing a large number of simple cores running in parallel on a single
chip and have been used in successful HPC architectures, such
as the Sunway SW26010 of the Sunway TaihuLight (#3 June 2019
Top500 [3]) and the 2048 core PEZY-SC2 of the Shoubu system B
(#1 June 2019 Green500 [2]). Micro-cores are also being used for
new HPC architectures, for example the RISC-V based European
Processor Initiative (EPI) [1], is developing a CPU for the next gen-
eration of European exascale machines, and their accelerator will
use very many simple RISC-V based cores.

FPGAs are another technology being investigated with respect
to the performance and energy efficiency challenges that the HPC
community will face in the near future. It has already been demon-
strated that, by programming the hardware at the electronics level,
one can obtain significantly reduced power consumption over CPUs
or GPUs. This efficiency advantage has increased the interest in
FPGA-based accelerators, particularly re-configurable architectures
for HPC [8]. However, a major limitation of FPGAs is their program-
ming challenge - not just the physical effort required but also the
bitstream build time, often many hours for non-trivial kernels. Soft-
cores, the configuration of an FPGA to appear like traditional CPU
core(s), are an interesting alternative, resulting in the development
of new accelerators, such as the GRVI Phalanx [6], which combine
very many simple soft-cores onto a single chip e.g. micro-cores. The
use of soft-cores allows researchers to experiment with CPU core
design, for example hardware acceleration for Posits, an alternative
to floating point arithmetic, as plug-ins to soft-core(s).

There are hundreds of physical or soft-core micro-core designs,
with over 40 implementations of RISC-V alone; the ability to assess
competing designs simply and quickly is crucial.

1.1 How to choose a micro-core architecture?
The key micro-core selection criteria are: core performance, power
consumption, chip area and code density. The specifics and order
of importance of these depend on the exact application but the
choices are nuanced, for instance it might not initially be apparent
that the first and last criteria are closely linked. An example of this

Soft-core MFLOPs/core
MicroBlaze (integer only) 0.120
MicroBlaze (floating point) 5.905

Table 1: LINPACK performance of the Xilinx MicroBlaze on
the Zynq-7020 @ 100MHz

is the benefit of reduced chip resource usage when configuring
without hardware floating point support, but there is a 50 times
performance impact on LINPACK due to the software emulation
library required to perform floating point arithmetic. By under-
standing the implications of different configuration decisions, the
user can make the most appropriate choice, in this case trading off
how much floating point arithmetic is in their code vs the saving
in chip resource.

Therefore, it is important to consider not only different micro-
core instruction set architectures (ISA) but also variants within a
particular processor ISA, especially for RISC-V based designs due
its very rich micro-architecture eco-system. For instance, when
selecting a RISC-V CPU there is a choice between many important
aspects such as pipelined vs non-pipelined, superscalar vs non-
superscalar, hardware floating point support, large register sets.
Without hard numbers to detail the impact of these choices, it is
easy to make the wrong decision and doing so in just one of these
will have a significant impact.

One approach would be to run a number of the very many cur-
rently available common benchmarks on these micro-cores. How-
ever, there are a number of architectural features common to micro-
cores that makes them significantly different from traditional CPUs
and difficult to benchmark:

• Tiny amounts on-chip RAM for code / data (c. 32KB)
• Low-level knowledge specific to each device:
– C memory map / linker files
– Core control mechanisms (reset / halt, interrupts)
– Host / device communications interface

• High communications latency and limited bandwidth
• Complex or no device debugging environment

The result is that running existing HPC benchmarks as-is on
micro-cores is at best difficult and most often impossible. In order to
compare and contrast the different micro-core options, a benchmark
framework is required to abstract much of this complexity.

In this poster and abstract we introduce the Eithne1 framework
that supports comparison of a number of micro-cores. The frame-
work separates the actual benchmark from the details of how this is
executed on the different technologies. We then illustrate some sam-
ple benchmarking results for the Adapteva Epiphany, two RISC-V

1Eithne (/Enj9/ "enya"): Gaelic for "kernel" or "grain".



implementations, ARM, and Xilinx MicroBlaze in terms of perfor-
mance and power consumption, using the LINPACK benchmark.

2 EITHNE BENCHMARK FRAMEWORK
Eithne supports the benchmarking of micro-core architectures,
whether physical chips or soft-cores running on FPGAs, by pro-
viding a framework that abstracts over the tricky architectural
differences. It enables a single benchmark codebase to be deployed
tomultiple devices by targeting the required devices at compile time.
Running the benchmark suite is as simple as starting execution
from the host, with the framework managing all communications
/ data transfer and kernel execution. The same interaction model
is used for all devices to minimise the impact of communications
bandwidth and latency across devices.

A wide variety of different host / device links are supported, from
on-chip communications for Zynq FPGAs, to on-board communi-
cations in the case of the Epiphany, to serial links for embedded
devices such as the RM32M1 (see Table 2). Host and device band-
width can be measured if required. This can be especially useful for
instance with soft-cores on FGPAs, one example is the performance
difference between having the FPGA fabric (soft-cores) and host
ARM CPU cores on the same package, and a board mounting an
FPGA with an external link to the CPU.

Eithne currently supports the XilinxMicroBlaze, PicoRV32 (RISC-
V) and VectorBlox Orca (RISC-V) soft-cores, the Adapteva Epiphany
III, NXP RV32M1, Cortex-A9 and threads running on the host.

Figure 1: Eithne framework architecture

2.1 Framework extensibility
Whilst a number of different benchmarks, communication mecha-
nisms and micro-core devices are currently supported, users will
want to use Eithne to benchmark future devices or kernels and inte-
grate these themselves. As such, we developed the benchmark with
extensibility in mind and provide it as a modular framework. Figure
1 illustrates the framework architecture, where Eithne is provided
as a stack of functionality; to extend with new functionality, such
as a new benchmark, device or communication mechanism, only
that level of the framework need be replaced, with all other levels
running unchanged. For example, the benchmark codes on the host,
which call framework APIs to allocate buffer space etc., can select
different devices through the same API calls with no code change.

The kernel running on each device is typically written in C and
compiled for that device. Whilst moving a kernel from one device to
another is often fairly trivial, again due to the stack of functionality
and standard API, the user might want to specialise that, either at
the code level or compiler options for the specific device which the
framework supports.

3 SAMPLE RESULTS
Whilst the intention of this extended abstract and poster is to in-
troduce the Eithne framework, we provide a sample set of results
here from the framework to illustrate some example metrics that
can be generated. For example, single-core power consumption vs.
performance may be of particular interest but Eithne provides APIs
to support multi-core devices. Crucially, can add other metrics but
even with the simple run presented here, one can see the benefits
of a framework that supports a number of different micro-cores
and communication links.

Table 2 outlines the performance and power consumption for the
currently supported set of micro-cores running the single-precision
LINPACK benchmark. It should be noted that the figures are for
software floating point versions of the cores and there are a number
of other parameters, including pipeline depth, that can impact the
results. All soft-cores are running on an Zynq-7020 at 100MHz with
8 cores. The MicroBlaze and Orca have been configured with an 5
stage pipeline and the PicoRV32 has no pipleline. Even with these
simple results, one can see the performance difference between
soft-cores and physical chips, along with the impact of different
ISAs and configuration options.

Technology MFLOPs Watts KB
PicoRV32 (soft-core) 0.32 0.18 8.92
Orca (soft-core) 0.32 0.11 47.26
MicroBlaze (soft-core) 0.96 0.19 78.93
MicroBlaze + FPU (soft-core) 47.20 0.18 73.30
Epiphany III 1508.16 0.90 8.27
Cortex-A9 33.20 0.60 13.40
RV32M1 27.02 0.19 36.57

Table 2: Performance, power consumption and kernel size
for LINPACK benchmark.

4 CONCLUSIONS AND FUTUREWORK
The purpose of the Eithne framework is to reduce the time taken to
explore, compare and contrast the different micro-core technologies
that are currently, and will be in the future, available to the HPC
community. The nature of this technology means that the wealth
of benchmarks that are available for traditional HPC machines,
such as HPL, NPB, HPCG, will simply not run as-is on these cores.
As such, a plug-in architecture which separates the behaviour of
the benchmark from the complexities of how it is launched, data
transferred and timed, for each target device is highly useful. The
plug-in architecture has allowed the comparison between hard
and soft-cores where the communications interface is significantly
different (shared memory vs. UART), and to very quickly add new
processor ISAs where the underlying hardware is already supported
by the framework.

Even these initial results highlight the benefit of hardware float-
ing point support and a pipelined architecture for performance,
with a minimal impact on FPGA resources.

An alternative to floating point emulation is to use other ap-
proaches such as fixed point arithmetic [7] or relax the accuracy of
calculation [5], the Eithne benchmark supports future exploration
of architectures and codes making this choice. Future work includes
implementing additional benchmarks, adding support for additional
RISC-V soft-cores e.g. RI5CY, SweRV, implementing kernels using
OpenMP and adding support for MPI-based communications.

2



REFERENCES
[1] 2019. European Processor Initiative Accelerator. https://www.

european-processor-initiative.eu/accelerator/
[2] 2019. June 2019 | GREEN500 Supercomputer Sites. https://www.top500.org/

green500/lists/2019/06/
[3] 2019. June 2019 | TOP500 Supercomputer Sites. https://www.top500.org/lists/

2019/06/
[4] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. LeBlanc. 1974.

Design of Ion-Implanted MOSFET’s with Very Small Physical Dimensions. 9, 5
(1974), 256–268. https://doi.org/10.1109/JSSC.1974.1050511

[5] Hadi Esmaeilzadeh, Emily Blem, Renée St. Amant, Karthikeyan Sankaralingam,
and Doug Burger. 2013. Power Challenges May End the Multicore Era. 56, 2 (2013),
93–102. https://doi.org/10.1145/2408776.2408797

[6] Jan Gray. 2016. GRVI Phalanx: A Massively Parallel RISC-V FPGA Accelerator
Accelerator. In Field-Programmable Custom Computing Machines (FCCM), 2016
IEEE 24th Annual International Symposium On (2016). IEEE, 17–20.

[7] Cherry Hinton and Cambridge CB. 1996. Document Number: ARM DAI 0033A:
Application Note 33 Fixed Point Arithmetic on the ARM.

[8] Martin Kaiser, René Griessl, and Jens Hagemeyer. 2017. A Reconfigurable Het-
erogeneous Microserver Architecture for Energy-Efficient Computing. (2017),
2.

3

https://www.european-processor-initiative.eu/accelerator/
https://www.european-processor-initiative.eu/accelerator/
https://www.top500.org/green500/lists/2019/06/
https://www.top500.org/green500/lists/2019/06/
https://www.top500.org/lists/2019/06/
https://www.top500.org/lists/2019/06/
https://doi.org/10.1109/JSSC.1974.1050511
https://doi.org/10.1145/2408776.2408797

	1 Introduction
	1.1 How to choose a micro-core architecture?

	2 Eithne benchmark framework
	2.1 Framework extensibility

	3 Sample results
	4 Conclusions and future work
	References

