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ABSTRACT
This poster focuses on a preconditioned conjugate gradient based

iterative eigensolver using an unconstrained energy functional min-
imization scheme. This scheme avoids an explicit reorthogonaliza-
tion of the trial eigenvectors and becomes an attractive alternative
for the solution of very large problems. The unconstrained formula-
tion is implemented in the first-principles materials and chemistry
CP2K code [1], which performs electronic structure calculations
based on a density functional theory approximation to the solution
of the many-body Schrödinger equation. The systems we use in
our studies have a number of atoms ranging from 2,247 to 12,288.
We study the convergence of the unconstrained formulation and
its scaling on a Cray XC40 (a partition with 9,688 Intel KNL nodes).
We show that there is a trade-off between the preconditioner that
leads to fast convergence and lower cost preconditioners that lead
to best time to solution.
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1 INTRODUCTION
Many scientific applications require the solution of eigenvalue

problems.When some small percentage of the eigenpairs is required
rather than the full spectrum, iterative eigensolvers are typically
used. This is because the computational cost of a direct solver scales
as the cube of the matrix dimension, while iterative solvers scale as
the square of the number of required eigenpairs times the matrix
dimension. The prefactor for the scaling of the iterative solver is
much larger than for the direct solver. The crossover point for which
method becomes the fastest varies with the class of systems under
study. Electronic structure calculations done in codes based on an
approximate solution to the Schrödinger equation is an example
of this class of problems, where typically a small percentage of the
lowest eigenpairs is required. Iterative methods are often used for
this class of problem, as they can scale well on large parallel com-
puters for large problems. Most of the operations in the algorithms
are large matrix multiplies, where at least one dimension of the
matrices has the dimension of the full matrix being diagonalized
(solution of and eigenvalue problem). The commonly used itera-
tive solvers for materials and chemistry codes are often referred
to as constrained energy functional approaches, as the orthogonal-
ity of the eigenvectors requires some form of reorthogonalization
of the trial vectors. This can result in a poor parallel scaling of
the reorthogonalization step. In contrast, unconstrained energy
functionals avoid the explicit reorthogonalization step and have a
potential for better parallel scaling than both direct eigensolvers
and constrained energy functional iterative solvers.

2 FORMALISM AND ALGORITHMS
First-principles methods based on Density Functional Theory

(DFT) in the Kohn-Sham (KS) formalism [2] are widely used for
electronic structure calculations in materials science and chemistry,
due to their computational efficiency and favorable scaling with
system size. The KS single particle eigenfunction equations are
usually written in atomic units as

Ĥψi(r) =
[
−
1
2
∇2 + V

]
ψi(r) = εiψi(r) (1)

where Ĥ is the Hamiltonian,ψi (r) are the wavefunctions for each
electron, εi is the energy of the electron, ∇2 is the kinetic energy
operator, and V is the potential. The probability of finding the i’th
electron at position r is given by ψi (r)ψ ∗

i (r), where ∗ denotes the
complex conjugate.

Figure 1: SCF method.

The commonly used approach
for solving the nonlinear eigen-
value problem (1) is the self-
consistent field (SCF) method.
The problem is linearized in an
inner loop by fixing the charge
density, which is then updated at
each step until convergence of the
charge density and potential field.
One starts from an initial guess
for ψi (r) in the first step, from
which a total charge density and
Ĥ can be calculated. See Fig. 1.

To solve Eq. (1) ψi (r) are usu-
ally expanded in a basis set or discretized on a real space grid. Com-
monly used basis are plane waves (Fourier expansion) and atom
centered Gaussian functions. Using a set of basis functions {ϕα (r)}
of size Nb , one can writeψi (r) =

∑
α Cα iϕα (r). If {ϕα (r)} are non-

orthogonal, the inner part of the SCF loop (see Fig. 1) requires the
solution of the associated generalized eigenvalue problem

HC = SCE (2)

where C is the matrix of generalized eigenvectors (coefficients of
the basis functions) obeying the orthogonality condition CT SC = I,
and E is the diagonal matrix of eigenvalues. For an orthonormal
basis S = I and (2) becomes a standard eigenvalue problem.

With a CG formulation, problem (2) can be cast in terms of a
minimization problem subject to the orthogonality constraint,

min Tr
[
CTHC

]
, CTSC = I. (3)

C is now thematrix of trial generalized eigenvectors with dimension
Nb ×No , where Nb is the size of the basis set and No is the number
of wavefunctions. At the solution, we obtain the total electronic
energy of the system,

∑
i εi .
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The unconstrained energy functional approach offers the possi-
bility of eliminating explicit diagonalization and operations on the
small overlap matrix. We define the transformationC = XS− 1

2 ,S =

XTX, where X spans the same subspace as C but is not required to
be orthogonal. Note that we use S for the Nb × Nb overlap matrix
of the basis functions and S for the No × No overlap matrix of the
trial vectors X, where No ≪ Nb . The minimization problem of Eq.
(3) can now be rewritten as

E[X] = min Tr
[
S−1XTHX

]
, (4)

relaxing the orthogonality constraint and introducing the so-called
unconstrained energy functional E [X]. Near the solution, S−1 is
close to the identity matrix I, and most implementations use the first
order expansion (2I − S) to approximate S−1, therefore avoiding a
matrix inversion. (See [3, 4] for related work.) Notably, approaches
based on expansions of S−1 never involve operations solely on the
small S matrix and this is a key ingredient for improved parallel
scaling. A caveat is that the removal of the orthogonality constraint,
and a different functional to minimize, affects convergence. In (4),
E[X] can be expressed as E[X] = Tr

[(
2I − XT SX

)
XTHX

]
, whose

gradient is G = 4HX − 2SXH − 2HXS, where H = XTHX (i.e.
No×No ). It has been shown that the minimization of this functional
with respect to X converges to the same energy as that of the
correct functional, that at convergence the subspace spanned by X
is the same as that spanned by the true eigenvectors C, and at the
minimum XT SX = I [5–8].

Figure 2: Set of preconditioners
studied in this work.

We use a precondi-
tioned conjugate gra-
dient (PCG) procedure
to minimize the en-
ergy functional, and
the Polak-Ribière for-
mula for computing
the parameters in the
line searches. We have
explored different pre-
conditioners for G; in
particular, by using A,
the Hessian of the un-
constrained function-
al, and applying A−1

to G (in a Newton-like
step). In practice, com-
puting A−1 is not feasible and we obtain its action by solving
an iterative system with A, up to K steps. For preconditioning
the inner PCG we can use either S−1, which is robust and cheap
to compute, or Ã−1, where Ã is an approximation for the Hes-
sian. We name these strategies FullHess-KIter-InvOvl and
FullHess-KIter-AprxHess, respectively. Alternatively, we can
turn off the preconditioned with A and only use either S−1 or
Ã−1 as preconditioner. We name these strategies InvOvl and
Iter-AprxHess, respectively. Then, we obtain a set of strategies as
shown in Fig. 2, where the left branch indicates inner precondition-
ing only, and the right branch indicates preconditioning with A. A
detailed discussion about these preconditioners is given in [9].

(a) (b)

Figure 3: Time to solution for full SCF convergence using
unconstrained minimization and setups of Fig. 2, compared
to direct solvers (ScaLAPACK and ELPA). (a) Water-1024, (b)
BiLayer. The actual times are given in parenthesis.

(a) (b)

Figure 4: Strong scaling, method D in Fig. 3. (a) OpenMP
threads per MPI task for a fixed number of MPI tasks (2560),
bulk liquid water with 1024 molecules. (b) Time to solution
for bulk liquid water with 1024, 2048 and 4096 molecules.
The largest simulation used roughly 38% of the fullmachine.

3 NUMERICAL EXPERIMENTS
All calculations have been performed on Cori, at (NERSC) [10].

Cori is a Cray XC40 system with two partitions; the one we used
consists of over 9600 nodes, each node has one Intel Xeon-Phi 7250
processor (KNL), connected with an Aries interconnect. Our imple-
mentation is a hybrid MPI+OpenMP, optimal for many-core archi-
tectures such as Cori. The CP2K software package was compiled
with the Intel compiler and linked to the latest available versions of
MKL, ELPA [11], and LIBXSMM [12] (a library optimized for small
matrix-matrix multiplications).

The systems used in the numerical experiments are: (a) 1024
molecules of bulk liquid water (Water-1024), (b) supramolecular
catalyst gold(III)-complex (Complex), (c) bilayer of MoS2-WSe2 (Bi-
Layer), and (d) divacancy point defect in silicon (SiDivac). These
systems present an increasing order of “complexity” for conver-
gence, and their sizes range from 2,247 to 12,288 atoms1. Fig. 3
shows the time to solution for full SCF convergence, where one
can observe that Iter-AprxHess (bar D) leads to best time. Fig. 4
shows strong scaling, in terms of OpenMP threads per MPI task
and time to solution, up to 230k cores.

As a final note, the unconstrained approach can be applied to
any matrix, and not only in the context of Gaussian basis electronic
structure methods (the focus of this poster). In future work we plan
to study the unconstrained approach to solve problems in other
domains.
1In this abstract we show results for systems (a) and (c) only; results for all systems
are given in the poster.
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