
Extremely Accelerated Deep Learning: ResNet-50 Training in
70.4 Seconds

Akihiro Tabuchi, Akihiko Kasagi, Masafumi Yamazaki, Takumi Honda, Masahiro Miwa
Takashi Shiraishi, Motohiro Kosaki, Naoto Fukumoto, Tsuguchika Tabaru, Atsushi Ike

Kohta Nakashima
(tabuchi.akihiro,kasagi.akihiko,m.yamazaki,honda.takumi,masahiro.miwa

shiraishi-ten,kosaki.motohiro,fukumoto.naoto,tabaru,ike,nakashima.kouta)@fujitsu.com
Fujitsu laboratories ltd.

kanagawa, Japan

ABSTRACT
Distributed deep learning using a large mini-batch is a key technol-
ogy to accelerate training in deep learning. However, it is difficult
to achieve a high scalability and maintain validation accuracy in
distributed learning on large clusters. We introduce two optimiza-
tions, reducing the computation time and overlapping the commu-
nication with the computation. By applying the techniques and
using 2,048 GPUs, we achieved the world’s fastest ResNet-50 train-
ing in MLPerf, which is a de facto standard DNN benchmark (as of
July 2019).

1 INTRODUCTION
Deep neural network (DNN) models trained on large datasets are
delivering impressive results in various fields, such as object de-
tection and language translation. However, the computation cost
becomes large with an increase in the sizes of DNN models and
datasets.

Distributed deep learning based on data parallelism is known to
be an effective approach to accelerate the training on clusters. In
this approach, all processes launched on the cluster have the same
DNN model. Each process repeats the training cycle of Forward,
Backward, Allreduce, and Updatewith different mini-batches. Each
process obtains own weight gradients after Forward and Backward
and shares the gradients in Allreduce. The shared weight gradients
are used in Update to improve the DNNmodel. In this paper, we fo-
cus on two optimization points, saving the additional computation
cost and optimizing communication scheduling.

Deep neural network training generally uses the stochastic gra-
dient descent (SGD) approach, and this approach requires many
updates to train a DNNmodel. However, for a large number of pro-
cesses, the number of updates for the SGD approach is not large
enough because the mini-batch size, which is the total data size for
each training cycle, increases. Thus, the validation accuracy tends
to decrease compared with training by few processes.

To prevent poor validation accuracy, many researchers have
proposed different techniques. Goyal et al. [3] proposed thewarmup
technique to keep the validation accuracy with a mini-batch size
of 8,192. Because the difference between the weight gradient norm
and the weight norm of each layer causes a relatively poor accu-
racy, the layer-wise adaptive rate scaling (LARS) of [8] normalizes
the difference of each layer, and the DNN model can be trained
with 32,768 without loss of validation accuracy. These techniques

improve the validation accuracy, but some techniques require ad-
ditional computations. We implemented these techniques on the
GPU without significant additional cost.

We also optimized communication scheduling because the over-
head becomes a significant problem for large clusters.The basic ap-
proach is to overlap the communication timewith the computation
time and improve the efficiency of communications. The commu-
nication efficiency is improved when the communication data size
is large. Hence, communicating the data of several layers at once
can improve the efficiency. However, in this approach, the commu-
nication time may overlap less with the computation time because
of the computation dependency. We optimized the communication
scheduling in order to obtain a better performance.

2 LARS ACCELERATION
The LARS technique adjusts the learning rate of each layer based
on the L2-norms ratio between the current weight and weight gra-
dient. This enables us to use a larger learning rate to sufficiently
train the model even if the number of training cycles is small. How-
ever, compared with major computations of DNN, LARS calcula-
tion on the GPU is not optimized. The key idea of acceleration is
to aggregate the LARS calculations for several layers. Since the
element size of weights is small in most of the layers in convolu-
tional neural networks such as ResNet-50, the computation of the
L2-norm of each layer is not efficient for GPUs. Therefore, launch-
ing such small kernels many times causes a significant overhead.
By aggregating the LARS calculations, we reduce the kernel launch
overhead and exploit GPU parallelism.

3 VARIABLE GROUP ALLREDUCE
Allreduce operation per each layer leads to a large overhead due to
frequent callings of communication operation. Hence, we distrib-
ute all layers of the model into several groups and perform Allre-
duce group by group.The straightforward approach is to distribute
the layers so that the number of layers is the same for each group.
However, this approach incurs significant non-overlapping time
because each group does not perform Allreduce until every layer
in the group completes the backward computation. The key idea
of our approach is to change the number of layers in a group to
efficiently overlap the communication with the backward compu-
tation. Our approach distributes few layers into the earlier group
in order to reduce the non-overlapping time. Especially, the first
group should perform the Allreduce early in order to overlap the



Woodstock ’18, June 03–05, 2018, Woodstock, NY
Akihiro Tabuchi, Akihiko Kasagi, Masafumi Yamazaki, Takumi Honda, Masahiro Miwa, Takashi Shiraishi, Motohiro Kosaki, Naoto Fukumoto, Tsuguchika Tabaru, Atsushi Ike,

and Kohta Nakashima

Table 1: Training time and Top-1 validation accuracy with ResNet-50 on ImageNet

Batch Size Processor DL Library Time Accuracy MLPerf Version
Facebook [3] 8,192 Tesla P100 × 256 Caffe2 1 hour 76.3 % -
Preferred Networks [2] 32,768 Tesla P100 × 1,024 Chainer 15 mins 74.9 % -
Tencent [4] 65,536 Tesla P40 × 2,048 TensorFlow 6.6 mins 75.8 % -
Google [7] 65,536 TPU v3 × 1,024 TensorFlow 1.8 mins 75.2 % 0.5
Sony [5] 55,296 Tesla V100 × 3,456 NNL 2.0 mins 75.29 % -
NVIDIA [1] 55,904 Tesla V100 × 1,536 MXNet 1.33 mins 76.97 % 0.6
Google [1] 32,768 TPU v3 × 1,024 TensorFlow 1.28 mins 76.28 % 0.6
This work 86,016 Tesla V100 × 2,048 MXNet 1.17 mins 76.10% 0.6

communication time with the backward computation time. In ad-
dition, we maintain a requirement that each group has more than
a few megabytes of data in order to obtain a better communication
throughput of Allreduce.

4 ENVIRONMENT AND RESULT
We used the AI Bridging Cloud Infrastructure (ABCI) to evaluate
the performance of our optimized MXNet framework. Each node
of the ABCI cluster consists of two CPUs of Xeon Gold 6148 and
four GPUs of NVIDIA Tesla V100 SXM2. In addition, GPUs in one
node are connected by NVLink, and nodes are connected by two
InfiniBand connections. We used up to 512 nodes, or 2,048 GPUs.

We used a mixed precision method, where we computed and
communicated using half precision floating point numbers and up-
dated own weights using single precision floating point numbers.
We used polynomial learning rate scheduling and also usedwarmup [3]
and LARS [8] techniques to stabilize the training using large mini-
batch. In addition, we used label smoothing [6] to improve the val-
idation accuracy.

Ourmeasurement of ResNet-50 training is according to theMLPerf
0.6 rule. This means that the training time does not include both
the initialization time and memory allocation time. As shown in
Table 1, in our optimized deep learning framework, the ResNet-50
training on ImageNet was completed in 70.4 seconds with 76.10%
validation accuracy. We also measured the scalability of ResNet-50.
Figure 1 shows the computational throughput of 86,016 mini-batch
size according to the number of GPUs. The results of 256 or fewer
GPUs could not be measured because GPUs do not have enough
memory to allocate the data. The red one is our fastest configura-
tion, which completes training in 70.4 seconds. Since the data size
that must be communicated does not depend on the mini-batch
size, the total communication times of the results increase with
the number of GPUs. On the other hand, the computation times
decrease as the number of GPUs increases because the batch size
per GPU decreases.This scalability shows that our implementation
can overlap the communication with the computation until 2,048
GPUs.

5 CONCLUSION
We optimized two points of the DNN training for large-scale GPU
clusters. The first one is the LARS calculation, and we aggregate
the calculations for several layers to improve the computation ef-
ficiency and reduce the kernel call overhead. The second one is

��������

	�	
��	
��

	�
�	���	�

	��	���	��

�

�������

���������

���������

���������

��� ���� ���� ���	

�
�
��
�
�
�
�
�
�	

�
�

�
�
��
��
��
�


������������

Figure 1: The throughput of our optimized framework is
in images per second. The whole mini-batch size is fixed
at 86,016, and the number of GPUs is changed from 512 to
2,048.

Allreduce scheduling, and we distribute layers into several groups
so that each group efficiently overlaps with the backward compu-
tation. We measured the training time of ResNet-50 using 2,048
GPUs on ABCI cluster. The result of our DNN training achieves
76.10% validation accuracy in 70.4 seconds according to MLPerf
0.6 rule.

6 ACKNOWLEDGMENTS
We appreciate the National Institute of Advanced Industrial Sci-
ence and Technology (AIST) and their support team for the stable
use of ABCI on a large cluster.

REFERENCES
[1] [n. d.]. MLPerf. https://mlperf.org/.
[2] T. Akiba, S. Suzuki, and K. Fukuda. 2017. Extremely Large Minibatch SGD: Train-

ing ResNet-50 on ImageNet in 15 Minutes. arXiv:1711.04325 (2017).
[3] P. Goyal, P. Dollar, R. Girshick, P. Noordhuis, L.Wesolowski, A. Kyrola, A. Tulloch,

Y. Jia, and K. He. 2017. Accurate, Large Minibatch SGD: Training ImageNet in 1
Hour. ArXiv:1706.02677 (2017).

[4] X. Jia, S. Song, W. He, Y. Wang, H. Rong, F. Zhou, L. Xie, Z. Guo, Y. Yang,
L. Yu, T. Chen, G. Hu, S. Shi, and X. Chu. 2018. Highly Scalable Deep Learn-
ing Training System with Mixed–Precision: Training ImageNet in Four Minutes.
arXiv:1807.11205 (2018).

[5] H. Mikami, H. Suganuma, P. U-chupala, Y. Tanaka, and Y. Kageyama.
2019. Massively Distributed SGD: ImageNet/ResNet-50 Training in a Flash.
arXiv:1811.05233v2 (2019).

[6] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. 2015. Rethinking the
Inception Architecture for Computer Vision. arXiv:1512.00567v3 (2015).

[7] C. Ying, S. Kumar, D. Chen, T. Wang, and Y. Cheng. 2018. Image Classification at
Supercomputer Scale. arXiv:1811.06992v2 (2018).

[8] Y. You, I. Gitman, and B. Ginsburg. 2017. Large Batch Training Of Convolutional
Networks. arXiv:1708.03888 (2017).

https://mlperf.org/

	Abstract
	1 Introduction
	2 LARS acceleration
	3 Variable group Allreduce
	4 Environment and result
	5 Conclusion
	6 Acknowledgments
	References

