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ABSTRACT
We present a parallelization scheme for classical simulations of
quantum circuits. Our scheme is based on a recent method to “cut”
large quantum circuits into smaller sub-circuits that can be simu-
lated independently, and whose simulation results can in turn be
re-combined to infer the output of the original circuit. The expo-
nentially smaller classical computing resources needed to simulate
smaller circuits are counterbalanced by exponential overhead in
terms of classical post-processing costs. We discuss how this over-
head can be massively parallelized to reduce classical computing
costs.
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1 INTRODUCTION
Quantum computers can solve certain computational tasks with
exponential speedup over their classical counterparts [1]. It should
therefore come as no surprise that classical simulations of quantum
computations incur exponential cost: the best known techniques
for evaluating general quantum circuits with N qubits have O(2N )

classical memory and runtime requirements. Nonetheless, such
classical simulations play a major role in developing new quantum
algorithms and understanding the behavior of quantum hardware.

Near-term quantum computing devices will be most suitable
for executing variational quantum eigensover (VQE) [10, 11] algo-
rithms that solve approximate optimization problems, such as such
as QAOA [4, 5]. The hardware-efficient ansatz (HWEA) is a particu-
lar family of VQE circuits that was designed for compatability with
near-term quantum hardware [6].

In this work, we implement a recently proposed method to “cut”
quantum circuits that are too large to evaluate on available hard-
ware. The process of cutting yields smaller, more tractable circuit
fragments, but at the cost of exponentially large classical post-
processing overhead [9]. We apply circuit cutting to classical simu-
lations of HWEA circuits that are highly amenable to circuit cutting
techniques, and discuss strategies to parallelize the associated post-
processing overheads.

SC19, November 17–22, 2019, Denver, CO, USA
2019. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Circuit Generator Cutter

Simulator Uniter

Quantum circuit

• Qiskit Aer—StateVector 
• Qiskit Aer—QASM 
• Atos 
• IntelQS

Simulation results • Recombine sub-circuit 
statistics to simulate 
evaluation of original 
circuit

Sub-circuits, metadata

Figure 1: Overview of our Circuit Cutting software. Blue
blocks show serial work and green blocks show highly par-
allel tasks.

2 METHODS
The main contribution of this work is a software tool that imple-
ments a variant of the circuit cutting algorithm first described in
ref. [9]. Our tool consists four separate parts, which we refer to as
the circuit generator, cutter, simulator, and uniter; see Figure 1.

Circuit Generator. In this work, we primarily focus on cutting
and simulating HWEA circuits [6]. These circuits are characterized
by layers of two-qubit gates sandwiched by single-qubit gates that
are parameterized by angles; see Figure 1 for a sketch of a single-
layer HWEA circuit. Although applications of HWEA circuits in-
volve classical optimization over single-qubit gate parameters, in
this work we are only concerned with application-agnostic features
of HWEA circuits, and therefore assign random angles to these
gates. The local connectivity of HWEA circuits makes them easy to
partition into multiple fragments using only a few cuts, in contrast
to e.g. the quantum fourier transform circuit with all-to-all qubit
connectivity [8]. As a first step in our software pipeline, we gen-
erate a Qiskit QuantumCircuit object [2] representing a HWEA
circuit with a chosen number of qubits and two-qubit gate layers.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 2: Two-level parallelization of the uniter, whichmust
evaluate a sum of outer products of vectors acquired from
circuit fragment simulations. Here P is the probability distri-
bution overmeasurement outcomes ®y on the original circuit;
®yj is the restriction of ®y to the output qubits of fragment j;
pi j is a probability distribution acquired from fragment sim-
ulations; and ai is a scalar coefficient. The sum can be paral-
lelized using MPI by assigning each term its own task (level
1), and each individual task computes an outer product that
can be further parallelized using OpenMP and standard nu-
merical techniques (level 2).

Cutter. After generating a HWEA circuit, we use a Monte Carlo
variant of Karger’s MIN-CUT algorithm [7] to search for a set of cuts
that partition the circuit into multiple fragments. We place con-
straints on our search to enforce a maximum number of qubits per
fragment, and ensure that the resulting fragments have a balanced
numer of qubits. While the HWEA circuit is straightforward to cut
by hand, a general-purpose cutting algorithm such as MIN-CUT will
be necessary for future efforts to cut a variety of circuits, such as
the quantum supremacy circuits in ref. [3]. After the search algo-
rithm identifies a satisfactory set of cuts, our cutter returns a Qiskit
QuantumCircuit object [2] for each fragment, as well as metadata
describing how these fragments fit together to recover the original
circuit. The Monte Carlo nature of the cut-searching algorithm
makes it straightforward to parallelize by running a large number
of independent search tasks.

Simulator. Once a circuit has been cut into several fragments,
we must simulate several variants (i.e. slightly modified versions)
of each fragment. These variants correspond to different sets of
measurement bases and state preparations at the locations of cuts,
and are necessary to classically reproduce the quantum correlations
present in the original circuit. Although the number of variants
for each fragment is exponential in the number of incident cuts
(4Cin × 3Cout , where Cin and Cout are respectively the number of
cuts at the input/output of the fragment), all variants of all frag-
ments can be simulated independently at this stage of our pipeline.
The simulation of these variants is therefore trivially parallelizable
by assigning each variant a separate task. Individual variant (cir-
cuit) simulations are further natively parallelized in Qiskit’s Aer
simulator to speed up the computation of fragment outputs.

Uniter. Once all of the simulation data for circuit fragments has
been collected, this data can be used to reconstruct the full prob-
ability distribution over measurement outcomes on the original,
pre-cut circuit. For a circuit with C cuts and F fragments, recon-
struction requires summing over K ≡ 4C terms that are each an
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Figure 3: The number of parallelizable computations in the
simulator (uniter) scales linearly (exponentially) with the
number of cuts to a single-layerHWEAcircuit. The linear re-
duction of fragment size with respect to the number of cuts
also implies an exponential reduction in classical resource
requirements for each simulator task.

F -fold outer (tensor) product of vectors acquired from fragment
simulations. This reconstruction naturally admits two-level par-
allelization with MPI (level 1) and OpenMP (level 2), as sketched
in Fig. 2. The sum of outer products is parallelizable with MPI, as
each outer product can be computed independently before adding
them all up. Furthermore, each outer product is an instance of the
standard BLAS level 3 routine DGEMM, which is parallelized using
OpenMP threads in standard numerical libraries such as Python’s
NumPy and SciPy.

3 RESULTS & CONCLUSIONS
The runtime for naïve classical simulations of a quantum circuit
scales exponentially with its number of qubits. Circuit cutting ad-
dresses some of this exponential cost by reducing the maximum
number of qubits that need to be simulated in an individual quan-
tum circuit. The exponential overhead of classical simulation is
then offloaded from a circuit simulator to a fragment uniter, which
must do an exponential amount of work to faithfully reproduce
the outputs of the original, pre-cut circuit. By pushing exponential
overhead to the uniter, circuit cutting enables data and thread level
parallelization of this exponential cost through MPI and OpenMP
(see Fig. 3).

In this way, our circuit cutting tool enables the evaluation of
large quantum circuits by partitioning them into smaller, more
manageable pieces. Efficient exploitation of the parallelism present
in the uniter is central to the success of our circuit cutting tool.
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