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The GW Method

BerkeleyGW is a massively parallel software package for studying the electron excited-state
properties of materials employing the GW and Bethe-Salpeter equation approach and beyond.
The dynamical properties of the electron are obtained as solution of the Solve Dyson’s equation:[

−1

2
∇2 + VKS + Σ(En)

]
φn = Enφn, (1)

Σ(En) effective operator Self-Energy → first order expansion Σ = iGW (G Green’s Function of
the system, W screened coulomb interaction). In BerkeleyGW [1]:

I Epsilon code → Compute inverse dielectric function (ε−1), O(N4)

I Sigma code → Compute W from ε−1 and solve Eq.1, O(N4)

Epsilon code: Inverse Dielectric Matrix ε−1 and its Frequency Dependence

Static Dielectric Matrix ε−1(ω = 0), input: ψmk wavefunctions and εmk energies

1. Calculate matrix elements M via fast Fourier transforms: O(NvNcNG logNG)→ MTXEL kernel.

2. Static polarizability χ(ω = 0), distributed matrix-multiplication: O(NvNcN
2
G)→ CHI-0 kernel.

3. Dielectric matrix ε and inversion ε−1: O(N3
G) → Inv (ScaLAPACK)

Frequency Dependence ε−1(ωi) for ωi 6= 0 within the static subspace approximation [2,3,4],
input: M from step 1 and χ(ω = 0) from step 2

1. Subspace basis C0
s of size Neig from diagonalization of χ(ω = 0), O(N3

G) → Diag (ELPA)

2. Basis transormation of M into M
0
s via C0

s , O(NvNcNeigNG) → Transf kernel

3. Evaluation of χ̄s(ωi 6= 0) in subspace basis, O(NωNvNcN
2
eig) → CHI-freq kernel

4. Evaluation of ε̄−1(ωi) from χ̄s(ωi), O(NωN
3
eig) → Inv-Sub (ScaLAPACK)

Execution Memory

Matrix Element (MTXEL) O(NvNcNG logNG) O(NvNcNG)

Polarizability ω = 0 (CHI-0) O(NvNcN
2
G) O(N2

G)

C0
s or ε−1 (Diag / Inv) O(N3

G) O(N2
G)

Basis transformation: M
0
s (Transf) O(NeigNvNcNG) O(NvNcNeig)

Polarizability ω 6= 0 (CHI-freq) O(NωNvNcN
2
eig) O(NωN

2
eig)

Inversion (Inv-Sub) O(NωN
3
eig) O(NωN

2
eig)

I/O O(NGNeig + NωN
2
eig) O(NGNeig + NωN

2
eig)

Table: (1) Computational cost associated with each of the kernels of the epsilon code. The parameters in the table
are Nv number of valence bands, Nc number of conduction (empty) bands, NG plane waves basis set size, Neig

subspace basis size, and Nω number of frequencies.

GPU Support for Computational Kernels

Matrix Elements Kernel → MTXEL

I Double loop over valence (outer) and conduction (inner) wavefunctions/bands

Figure: Schematic representation of the operations performed in the inner loop of the MTXEL kernel.

I Use cuFFT library to perform the fast Fourier transforms.

I Use data streams and host pinned memory, one stream for each conduction wavefunction
(inner loop index) → asynchronous memory transfer + high concurrency on device .

I Conduction bands (FFT boxes) offloaded to device over batches to avoid out of memory.

I CUDA kernels for Put/Multiply/Get to keep intermediates on device.

GPU Support for Computational Kernels (Continued)

Static Polarizability Kernel → CHI-0

I Large distributed matrix multiplication

Figure: Schematic representation of the data layout and communication scheme for the CHI-0 kernel.

I Use cuBLAS to perform the local ZGEMM

I Data stream and host pinned memory for the matrix buffers → asynchronous memory transfer
and calls to cuBLAS

I Non-blocking cyclic communication scheme: communication is finalized before stream is
synchronized → overlap communication (CPU) computation (GPU)

I Batch over conduction wavefunction index to control memory usage on device

Basis Transformation → Transf

I Similar communication scheme as CHI-0, potential memory bottlenecks for both host/device
→ all eigenvectors need to be communicated to all MPI tasks

I Batch communication over eigenvector index → control host memory usage

I Batch computation over (valence) wavefunction index → control device memory usage

Frequency-dependent Polarizability Kernel → CHI-freq

I Similar communication scheme as CHI-0

I Many matrix multiplication at multiple frequencies, matrices smaller than CHI-0

(NG/Neig ' 5− 10)

I Data streams over frequency index → concurrent cuZGEMM execution on device

I Batch over (conduction) wavefunction index to control memory usage on device

Benchmarks for Performance Measurement

Dvac-Si-214 Dvac-Si-510 Dvac-Si-998

Nψ
G 31,463 74,653 145,837

NG 11,075 26,529 51,627

Nb 6,397 15,045 29,346

Nv 428 1,020 1,996

Nc 5,969 14,025 27,350

Neig 3,500 7,000 14,000

Nω 10 10 10

Epsilon Min PFlops 5.8 157.9 2335.7

Epsilon Min Memory (Tb) 0.6 7.7 57.5

I Benchmarks based on a silicon divacancy defect in silicon (a prototype of a solid state qbit)

I Three systems of increasing size (214, 512 and 998 silicon atoms)

I Computational parameters reported in the table (see also Table (1) for the actual cost)

CPU-Only vs CPU+GPU

Comparison between the CPU-only and CPU+GPU executions measured on Titan and Summit
(OLCF). The right plot is the zoom-in version of the left. All optimized kernels show great
acceleration from GPU support, with a 14x speedup for the overall execution on Summit.

Strong Scaling on Summit@OLCF

Good strong scaling depending on
system size, scaling to almost 5,000
GPU’s (' 17% of full machine). Par-
allel I/O issues for large scale calcula-
tion (HDF5 library).

Weak Scaling on Summit@OLCF

Good weak scaling; as problem size
increases, memory grows to O(N3)
and flops increases to O(N4)→ more
memory available for larger systems,
less communication and better paral-
lel performance.

Comparison Across Architectures: Time vs Power

Comparing performance in term
of energy efficiency between Edi-
son@NERSC and Summit@OLCF.
Ideal scaling (dotted lines) → con-
stant energy consumption increasing
power. GPUs are 16x more power
efficient than CPUs consistently
through all three benchmarks.

Summary

I BerkeleyGW large-scale GW calculations are moving to GPUs!

I 14x speedup obtained from GPU acceleration and lots of lessons learned during optimization!

I Excellent time to solution (minutes) is achieved for systems made of thousands of atoms!

I More efforts are needed to optimize parallel I/O and accelerate libraries for eigensolvers and
matrix inversions!
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