FBLAS: Streaming Linear Algebra Kernels on FPGA

Tiziano De Matteis, Johannes de Fine Licht and Torsten Hoefler
Department of Computer Science, ETH Zurich, Switzerland
{tdematt, definelicht, htor} @inf.ethz.ch

Abstract—Reconfigurable hardware represents an attractive
alternative to load-store architectures, as it allows eliminating
expensive control and data movement overheads in computations.
In practice, these devices are often not considered in the high-
performance computing community, due to the steep learning
curve and low productivity of hardware design, and the lack of
available library support for fundamental operations. We present
FBLAS, an open source implementation of Basic Linear Algebra
Subroutines (BLAS) for FPGAs. The library is implemented with
a modern HLS tool to promote productivity, reusability, and
maintainability. Numerical routines are designed to be easily
composed exploiting on-chip connections, to reduce off-chip
communication resulting in lower communication volume.

I. INTRODUCTION

The end of Dennard scaling [[1] and Moore’s law [2] has
exhibited the limitations of traditional Load-Store Architec-
tures (LSA), where data movement has come to dominate both
energy and performance. To eliminate this overhead, we must
employ architectures that are driven by data movement itself,
and design static dataflow architectures that are specialized to
the target application. FPGAs allow prototyping and exploiting
application specific circuits by laying out fast-memory, inter-
connect, and computational logic according to the dataflow of
the application. By avoiding unnecessary lookups and control
logic, this yields higher energy efficiency than traditional
LSAs. With the massive parallelism offered by these devices,
along with the introduction of high-bandwidth memory (e.g.,
Xilinx Alveo U280) and native floating point units (e.g., Intel
Stratix 10), peak floating point and memory performance
allows them to be competitive on HPC workloads [3]], [4].

Despite the promise of massive spatial parallelism, FPGAs
are rarely considered for HPC systems and applications due
to the steep learning curve and low productivity of hardware
design. With the introduction of High-Level Synthesis (HLS)
tools, programming hardware has become more accessible, but
optimizing for these architectures is still a cumbersome task
[5]l. Furthermore, even with access to HLS, development of
HPC codes is further hampered by the lack of maintained
and publicly available high-level libraries, requiring most
components to be implemented from scratch

We present FBLAS, an open source implementation of
the Basic Linear Algebra Subroutines (BLAS) for FPGAs.
FBLAS is implemented with HLS, enabling reusability, main-
tainability, and portability across FPGAs, and easy integra-
tion with existing software and hardware codes. Numerical
module interfaces are designed to natively support streaming
communication across on-chip connections, allowing them to
be composed avoiding costly reads from off-chip memory,

APPLICATIONS
(HLS programs, Host Programs...)
— // FPGA
1 +BLAS
T HOST API
*BLAS
|
l HLS MODULES
* \ | o]
HLS TOOLS }

Fig. 1: Overview of the FBLAS Dibrary.

providing significant performance improvements for I/O bound
computations by reducing the total communication volume. In
addition, FBLAS provides a standard BL AS-compliant host-
side interface, allowing numerical routines to be offloaded to
FPGAs directly from the host system without writing hardware
code. With the methodologies used to design FBLAS, we hope
to set a precedent for FPGA library design, and contribute
to the toolbox of customizable hardware components that
is necessary for HPC codes to start productively targeting
reconfigurable platforms.

II. THE FBLAS LIBRARY

FBLAS exposes two layers of functionality to the program-
mer (Fig. [T): HLS modules, produced by a provided code gen-
erator, can be integrated into existing hardware designs; and a
high-level host API conform to the classical BLAS interface.
This distinction facilitates two ways of interacting with the
library, depending on the use-case and level of abstraction
required. Currently, FBLAS targets Intel devices, and it is
implemented with the Intel FPGA SDK for OpenCL [6] tool.

A. HLS modules

HLS modules are independent computational entities that
implement a library function (i.e., a routine), and have precise
behaviour and interface. The HLS programmer can integrate
HLS modules into her own HLS code: they can be invoked
as functions, or composed in a streaming setting. Thanks to
the massive spatial parallelism available, different modules can
execute in parallel, and we enable modules to exchange data
using direct on-chip resources, rather than resorting to DRAM.
In FBLAS, modules implement BLAS routines (DOT, GEMV,
GEMM, etc.). Modules have been designed with compute per-
formance in mind, exploiting the spatial parallelism and fast
on-chip memory on FPGAs. They have a streaming interface:
data is received and produced through FIFO buffers.

! An initial release of FBLAS is available at: https:/github.com/spcl/FBLAS

https://github.com/spcl/FBLAS

B. Host API

The Host API allows the user to invoke routines directly
from the host program. The API is written in C++, and
provides a set of library calls that match the classical BLAS
calls in terms of signature and behavior. Following the stan-
dard OpenCL programming flow, the host programmer is
responsible to transferring data to and from the device, can
invoke the desired FBLAS routines working on the FPGA
memory, then copy back the result from the device.

C. Code Generator

HLS modules in isolation work on streaming interfaces,
which must be integrated with consumers and producers. Con-
nections to/from DRAM, require dedicated modules to interact
with off-chip memory. To produce the HLS modules required
by both the high-level and low-level API, FBLAS provides
a template-based code generator, that produces synthesizable
OpenCL kernels. If the data is stored in DRAM, helper kernels
must be created to read and inject data to the modules, and to
write results back to memory. The code generator accepts a
routines specification file, which is a JSON file provided by the
programmer, specifying the routines that she wants to invoke.
The programmer can customize functional parameters (e.g., if
a routine accepts a transposed or non-transposed matrix) and
non-functional parameters (e.g., vectorization widths and tile
sizes). The code generator will produce a set of OpenCL files
that can be used as input to the HLS compiler to synthesize
the bitstream for reprogramming the FPGA.

III. MODULE DESIGN

FBLAS modules come pre-optimized with key HLS trans-
formations, but are configurable to allow the user to specialize
them according to desired performance or utilization require-
ments. This is facilitated by tweaking the parameters given to
the employed HLS transformations, decribed below.

A. Applied HLS Optimizations

To optimize FBLAS modules, we employ a set of FPGA-
targeted optimizations [5]], divided into three classes.

1) Pipeline-enabling Transformations: Pipelining is crucial
for efficient hardware design. For a loop, this implies an
Initiation Interval (II) of 1, meaning that a new loop iteration
is started every clock cycle. We apply iteration space trans-
position, loop strip-mining, and accumulation interleaving
to resolve loop-carried dependencies and hardware resource
contention (usually to memory blocks), which can prevent the
tool from scheduling the loop with an II of 1.

2) Replication: Parallelism on FPGA is obtained by repli-
cating compute units. We achieve this by unrolling loop nests.
Loop unrolling is applied by strip-mining the computations to
expose unrolling opportunities for parallelism. We define the
vectorization width W, which is used as the unrolling factor
for inner loops. As this directly affects the generated hardware,
it must be a compile-time constant.

3) Tiling: In FBLAS, tiling is used for Level 2 and Level 3
routines, where there is opportunity for data reuse. Tiling is
implemented by strip-mining loops and reordering them to
the desired reuse pattern, and explicitly instantiating fast on-
chip buffers for the reused data. Tile sizes must be defined
at compile-time, as they affect the number of memory blocks
instantiated to hold the data.

Since FBLAS modules are implemented with streaming in-
terfaces, tiling routines has implications for how data must be
sent to, from, and between modules. In particular, matrices
are tiled in 2D, where both the tile elements and the order of
tiles can be scheduled by rows or by columns. This results in 4
possible modes of streaming a matrix. For this reason, FBLAS
routines must take into account that data may be streamed in
different ways and the module streaming interface specifies
how input data is received and how output data is produced.

B. Systolic Implementation of GEMM

For the GEMM routine, an implementation based on unrolled
and tiled loops, could result in designs characterized by high
fan-in/fan-out, that prevent the module scalability. Therefore,
we organized the computation using a 2D systolic array [7],
such as the one shown in Fig.[2| A grid of Pr X Pc processing

< STORE C ‘: ‘ DRAIN-C, 4—‘ DRAIN-C, |<— - "DRAIN'CPC-I
<> [READB >
a |] FEED-B, |——Jp»| FEED-B, FEED-Bp,
E__READA i * * * |
> PE > PE > PE
[(0,0) [o1 "7 (0,Pc-1)

v A A

(6} —~(&)
A . A
7 \ A v \ A

il (oE (o) e

Fig. 2: GEMM systolic implementation

v v A
E e
: T A

elements (PEs) is in charge of computing a tile of size Tr X T¢
of the result matrix C. Ty and T are multiples of Pr and
Pc respectively, and, therefore, each PE is responsible for
evaluating TrT¢ /P Pc elements of the C tile.

Input elements are read from DRAM (by Read A and Read
B helper kernels) and forwarded by a set of feeders, according
to the used tiling schema, to the first row and column of PEs.
Then, each column of PEs forwards the elements of A, and
each row of PEs forwards the elements of B, in a pipelined
fashion. On each clock cycle, a PE receives one element of A
and one element of B, multiplies them and accumulates over
the resulting element of C'. When the result is complete, each
PE sends its contributions to a set of drainers. The store C
kernel collects the results and writes them into memory.

IV. STREAMING COMPOSITION

Numerical computations may involve two or more modules
that share or reuse data. The streaming interface introduced in

Sec. enables modules to communicate through on-chip
memory, allowing to reduce costly off-chip memory accesses,
and to pipeline parallel execution of different modules.

We model a computation as a module directed acyclic graph
(MDAG), in which vertices are hardware modules, and edges
represent data streamed between modules. Source and sink
vertices (circles) are interface modules, responsible for off-
chip memory accesses. Other nodes (rectangles) are computa-
tional modules, e.g., FBLAS routines. Edges are implemented
with FIFO buffers of a finite size. The number of elements
consumed and produced at the inputs and outputs of a node
is defined by the FBLAS routine interface. Stalls occur when
a module is blocked because its output channel is full or an
input channel is empty. We consider an MDAG to be valid
if it expresses a composition that will terminate, i.e., it does
not stall forever. Additionally, an edge in the MDAG between
two modules is valid if 1) the number of elements produced
is identical to the number of elements consumed; and 2) the
order in which elements are consumed corresponds to order in
which they are produced. Tiling schemes must be compatible,
i.e., tiles must have the same size and must be streamed in the
same way between consecutive modules.

In the following, we will show two common module com-
positions patterns that can be found in the updated set of
BLAS subprograms introduced by Blackford et al. [8]. These,
can be implemented by using two or more BLAS calls, and
are utilized in various numerical applications. We will study
the feasibility and benefits of a streaming implementation
compared to executing the composed BL AS-functions sequen-
tially. We distinguish between two cases: /) the MDAG is a
multitree: that is, there is at most one path between any pair
of vertices, and 2) all other MDAGs.

A. Composition of multitrees

Generally, a multi-tree module composition, with valid
edges, is always valid. Consider, for example, AXPYDOT,
which computes z = w — av and § = 2Tu, where w, v,
and u are vectors of length N. To implement this computation
with BLAS, we need a COPY, an AXPY, and a DOT routine.
The number of memory I/O operations (reads/write from
memory) necessary to compute the result is then equal to
2N 4+ 3N 4 2N = 7N. We can exploit module composition
by chaining the AXPY and the DOT modules: the output
of AXPY (z), will be directly streamed to the DOT module
(see Fig. [3). This also allows omitting the first copy of w.

? 9
G—Lom J o 1@

Fig. 3: AXPYDOT streaming implementation.

The number of I/O operations is then reduce to 3N + 1.
In addition, the AXPY and DOT modules are executed in
parallel, reducing the number of cycles to completion from
C(sequential = (Lcopy + N) + (Ldot + N) + (Laxpy + N) to

just Leopy + Laxpy + Laor + N. If N is sufficiently large, the
computation time is reduced from 3N to just N.

B. Composition of non-multitrees

If the MDAG is not a multitree (i.e., there is more than
one path between two nodes in the graph), invalid graphs can
occur. For example, GEMVER computes B = A+u1v1T+uQUQT,
T = BBTy—l—z, and w = aBx, where « and 3 are two scalars,
A and B are N x N matrices, and w1, us, v1,v2, T, ¥, 2, and
w are vectors of length N. With classic BLAS, this requires
calling two GER, two GEMV and two copies. In a streaming
implementation, the computation of B can be realized using
a linear sequence of two GER calls. Then B is used for the
computation of x and w. A streaming implementation would
result in the two GEMV modules sharing the output of the
GER computations, with the first GEMV streaming the result
z to the second one. Given that replaying data is not allowed
between two computational modules (condition 1. of being a
valid edge), the first GEMV, must receive B in tiles by columns.
In this way, it produces a block of results only after it receives
an entire column of tiles of B, i.e., N1, elements, where
Ty is the width of a tile. Therefore, the composition would
stall forever, unless the channel between the GER module and
the second GEMV has a size >NT,,. Unless N is known a
priori, this quantity is not fixed at compilation time, and the
composition is invalid.

Invalid MDAGs can be handled by the user by either a)
setting the channel size appropriately (according to the size
of input data) or b) breaking the MDAG into multiple valid
components, communicating through DRAM in between. In
this example, although this prevents a full streaming im-
plementation, we can resort to multiple sequential multitree
streaming composition (Fig. @).

Pe 9 @@ 7
O—fw 1 { = ot O
om0

Fig. 4: GEMVER: a possible streaming implementation.

The first component streams between the two GER calls and
one GEMV call, producing B and z and storing them in DRAM.
After this component has terminated, B and = are present
in DRAM, and the final GEMV can be executed. For this
composition, the number of I/O operations is reduced from
8N? 4+ 10N ~ 8N? to 3N? + 9N ~ 3N?2, and number of
cycles to completion is reduced from 5N2 + N to 2N2.

V. EVALUATION

FBLAS implements all level-1 routines, and all generic
level-2/-3 routines (GEMV, TRSV, GER, SYR, SYR2, GEMM,
SYRK, SYR2K, and TRSM), for a total of 22 routines in
single and double precision. To evaluate FBLAS, we show

100

100

10 10

GOps/s
i
GOps/s

Vectorization width

SGEMV o3 DGEMV Emmm 1000 [SGEMM 64x32 =—5 DGEMM 16x8 === 1
800 [. e J
] @ —
_ 2 600 | = 4
T 0
S| i]
200 | 1
. L e N
16 64 128 256 512
Vectorization width Tile Size

Fig. 5: Performance of modules implementing DOT, GEMV, and GEMM. Horizontal bars indicate expected performance.

the scaling of a representative set of single HLS modules, and
the benefits of streaming composition. Experiments have been
performed on a Nallatech 520N card, equipped with an Intel
Stratix 10 GX 2800 FPGA. For synthesizing FPGA kernels,
we use the Intel FPGA SDK for OpenCL v19.1.

A. Individual Module Evaluation

To evaluate the impact of vectorization and tiling on the
performance of individual FBLAS modules, we considered
modules that implement the DOT, GEMV and GEMM routines,
as representative samples of BLAS Level 1, 2, and 3, respec-
tively. Input data is generated directly on the FPGA, to test
the scaling behavior of the memory bound applications DOT
and GEMV. Averaged computation times have been considered
for producing the reported performance figures. Performance is
reported in floating point operations per second (Ops/s) based
on the averaged execution time. Expected performance is
computed by taking the number of used DSPs and multiplying
by the frequency of the synthesized designed.

Fig.] reports the result of the evaluation. Left and middle
plots, show the evaluation for the DOT and GEMV modules that
operate on single and double precision, with a vectorization
width spans from 8 to 64. For DOT the input data size is
fixed at 100M elements. For GEMV we used square tiles of
size 1024 x 1024, and a matrix of size 8192 x 8192. For both
testbeds, synthesized designs are able to achieve the expected
performance, implying that the instantiated compute is running
at full throughput. Fig. [5] (right) shows the results obtained for
GEMM with matrices 4096 x 4096 and different squared tile
sizes. In the GEMM module we use a systolic implementation
(see Sec.[[II-B), with an array of size 64 x 32 (single precision)
and 16 x 8 (double precision). These are the highest values
for which the compiler is able to generate the design without
failing placement or routing. Smaller systolic arrays achieved
expected performance already with small tile sizes. With larger
designs, by increasing the tiles size we were able to approach
the expected performance.

B. Streaming Composition Evaluation

We used the applications discussed in Sec. [[V] to evaluate
the performance gains achieved by module composition. The
streaming compositions are compared to calling the modules
one-by-one via the host layer. For all the modules we fixed the
vectorization width to 16 and, when used, tiles of size 1024 x
1024. Fig. [] reports the speedups obtained with different input
data sizes, computed as the ratio between the execution times
of the host layer version over the streaming composition.

AXPYDOT GEMVER

Speedup

o B N W A O
Speedup
N

* X ¥~
2M am 8M 16M RECHeC
Input data size Input data size

Fig. 6: Speedup of streaming composition kernels over indi-
vidual kernels.

%@&*

According to the analysis done in Sec. [[V-A] for AXPYDOT
we expected a speedup of 3. However, given that the vector z
used by the AXPY routine is read/written in the same memory
module, this results in a slow-down of the module, that does
not affect the streaming version. This increases the achieved
speedup to 4. Speedups for GEMVER confirm the analysis
performed in Sec. [V-B] These experiments validate our per-
formance analysis and highlight the performance benefits of
pipelining computational modules using on-chip FIFO buffers.

VI. CONCLUSION

We presented FBLAS, the first publicly available BLAS
implementation for FPGA. FBLAS is realized by using HLS
tools, and allows programmers to offload numerical routines
to the FPGA directly from a host program, or to integrate spe-
cialized FBLAS modules into other HLS codes. HLS modules
expose streaming interfaces, enabling pipelined composition
by exploiting on-chip data movement. By releasing the code
as open source, we hope to involve the community in the
continued development of FBLAS, targeting both current and
future OpenCL-compatible devices

REFERENCES

[1] H. Esmaeilzadeh et al., “Dark Silicon and the End of Multicore Scaling”,
IEEE Micro vol. 32, pp. 122-134,2012.

[2] M.M. Waldrop, “The chips are down for Moore’s law”, Nature News
vol. 530, p. 144, 2016.

[3] E. Nurvitadhi et al. “Can FPGAs Beat GPUs in Accelerating Next-
Generation Deep Neural Networks?”, In Proceedings of FPGA 2017,
pp. 5-14,2017.

[4] M. Duncan et al. “A Customizable Matrix Multiplication Framework
for the Intel HARPv2 Xeon+FPGA Platform: A Deep Learning Case
Study”, In Proceedings of FPGA 2018, pp. 107-116, 2018.

[5] J. de Fine Licht et al., “Transformations of High-Level Synthesis Codes
for High-Performance Computing”, In CoRR vol. abs/1805.08288, 2018.

[6] Intel Corp., “Intel FPGA SDK For OpenCL”, 2019.

[7] H.T. Kung et al., “Systolic Arrays for VLSI”, CMU-CS, 1978.

[8] S. Blackford et al. “An Updated Set of Basic Linear Algebra Subpro-
grams (BLAS)*, ACM Trans. Math. Softw. vol. 28, pp. 135-151, 2002.

	Introduction
	The fBLAS Library
	HLS modules
	Host API
	Code Generator

	Module Design
	Applied HLS Optimizations
	Pipeline-enabling Transformations
	Replication
	Tiling

	Systolic Implementation of GEMM

	Streaming composition
	Composition of multitrees
	Composition of non-multitrees

	Evaluation
	Individual Module Evaluation
	Streaming Composition Evaluation

	Conclusion
	References

