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Abstract—As we prepare for further technological advance-
ment in supercomputing, the diversity of hardware architec-
tures and parallel programming languages has increased to
new levels. At the same time, extracting performance from
so many architectures is even more difficult. In this context,
the appearance of portable languages capable of generating
executable code for multiple architectures has become a recurrent
research target. We port a set of seven parallel benchmarks from
SPEC ACCEL suite and a wave propagation code to one such
portable language: the Kokkos C++ programming library. Using
the original OpenACC versions of the eight codes, we apply a
known performance portability metric on the OpenACC and
Kokkos versions of those codes across a variety of hardware
platforms and problem sizes. We observe that the portability
metric is sensitive to the problem size. To remedy this deficiency,
we propose a novel metric for performance portability, apply the
proposed metric to the eight codes and discuss the results.

Index Terms—Kokkos, OpenACC, performance, portability,
benchmark, metrics

I. INTRODUCTION

The plethora of architectures and programming languages
pose a challenge for application developers. Many parallel
clusters today have nodes with multiple computer architec-
tures. In this scenario, applications need to perform well on
these multiple architectures simultaneously to fulfill the need
for cost-effectiveness and easy maintenance [1].

The task of maintaining legacy, production-level code is
costly. That’s one of the reasons why programmers must
consider portability in advance, otherwise their application
shall become restricted to the platform in which the code was
created, removing the ability to run on other architectures.
The solution of having multiple versions of the same code,
one for each parallel machine, is clearly not effective. Further-
more, taking advantage of modern multi-core and many-core
architectures is even more difficult because the optimization
effort that is most effective for a particular hardware does not
necessarily perform well on other architectures.

Another issue is that rewriting code is inevitable when
working with specialized, non-portable languages since the
target hardware is rapidly evolving. Ideally, it would be best to
adopt a single, performance portable source code that performs
acceptably on all target platforms, even if performance is
sacrificed by narrow margins.
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Under these circumstances, some parallel programming
languages such as directive-based OpenACC [2] and OpenMP
4.5 (known as OpenMP Target) [3] have appeared to give the
programmers alternatives for writing portable code. Another
example of a modern portable language is a C++ template li-
brary called Kokkos [4]. Through template metaprogramming,
Kokkos was built to add portability to user applications. In
order to test the effectiveness of Kokkos in relation to Ope-
nACC, we picked a set of benchmarks and a full application
code capable of running on a range of architectures. This
approach is more effective than focusing on a single large-
scale application because we can stress Kokkos with a variety
of kernels and thus better explore the features and abstractions
that Kokkos offers.

We selected a set of benchmarks (a portion of the SPEC
ACCEL 1.2 suite [5]) and a full application (a wave propa-
gation code named Fletcher) as our test suite. We ported the
original OpenACC version of the eight codes to Kokkos and
then measured the performance of both OpenACC and Kokkos
versions of all codes on two machines: Exahost and Blaise,
both equipped with distinct Intel Xeon CPUs and NVIDIA
GPUs.

We compare the performance portability of Kokkos and
OpenACC on these codes by applying the metric described
in [6]. This metric allows us to draw performance numbers
specific to our set of platforms of interest. We also show
how this metric behaves by varying the problem size. As
expected, an application might perform well until the problem
size increases to a point where the performance measures no
longer hold. In a sense, these comparisons intend to reveal if
problem size should also be considered when analyzing per-
formance portability. To encompass problem size variation, we
propose an alternative metric to the now popular performance
portability metric from [6], apply the proposed metric to all
codes in all machines and draw results.

This work is structured as follows: section 2 brings the
required background and related work; in section 3 we digress
to the meaning of a problem and an application that solves it;
in section 4 we run the benchmarks and compute their porta-
bility; in section 5 we describe a new metric for performance
portability and use it on the benchmarks; section 6 presents
our experiments on Fletcher and in section 7 we present our
conclusions and opportunities of future work.



II. RELATED WORK

There are many metrics for measuring productivity, pro-
gramming effort, performance and, more recently, performance
portability. This section presents a brief review of some studies
that have proposed ways of quantifying the productivity, effort,
performance, and portability of the many existing parallel
programming languages. We shall visit the publications and
present the metrics we deemed related to this work.

A. Empirically comparing languages

Back in 2005, studies regarding the utility of specific
programming models, languages, and practices within the HPC
community were rare, but researchers had already realized the
importance of studying productivity and performance of HPC
applications.

In that year, Hochstein et al. [7] conducted empirical studies
on the human effort required to develop parallel applications,
plus the amount of machine time required to execute them.
These studies were conducted on graduate-level introductory
HPC classrooms. Students coded two simple parallel appli-
cations (“game of life” and “grid of resistors”) using both
OpenMP [3] and MPI [8].

By instrumenting the students’ development process, they
concluded that “more effort will be required to write an MPI
code than will be required to write an OpenMP code for
the same application”. They did not attempt to compare the
performance of the two models, but rather assess whether the
students were able to achieve any speedup or not. Although
the students were successful in achieving speedup, there were
not enough data to compare the parallelism between the two
models.

B. Measuring the programming effort

In 2017, Memeti et al. [9] exploited the available perfor-
mance of various parallel programming languages, namely
multi-core OpenMP [3], OpenCL [10], OpenACC [2] and
CUDA [11] in order to empirically study their characteristics
with respect to programming productivity, performance, and
energy consumption. Experiments were conducted using the
industry-standard SPEC ACCEL benchmark suite [5] and the
Rodinia benchmark suite [12] for accelerated computing on
two heterogeneous systems that combined Intel Xeon E5
Processors with an NVIDIA GPU accelerator or an Intel Xeon
Phi co-processor. Their work addressed the challenge for the
developers to select one of the many available parallel pro-
gramming languages according to the aforementioned criteria.

They used homegrown and third-party measurement tools
to quantify the programming effort required to parallelize a
code and to assess the performance and energy consumption
of the benchmarks. They counted the lines of code (LOC)
corresponding to parallel constructs (such as OpenMP com-
piler directives or CUDA specific code lines) into LOCpar.
Likewise, the total number of LOC (legacy code plus par-
allel constructs) is given by LOCtotal. Each application has

its own LOCpar and LOCtotal, therefore, their definition of
parallelization effort is as follows:

Effortpar [%] = 100 ∗ LOCpar/LOCtotal (1)

Major observations from their work included: (1) OpenCL
required much more effort than OpenACC for SPEC ACCEL;
(2) OpenCL on average required about two times more effort
than CUDA for Rodinia; (3) OpenMP required less effort than
OpenCL and CUDA; (4) OpenMP, OpenCL, and CUDA had
comparable performance and energy consumption but OpenCL
performed better than OpenACC for SPEC ACCEL.

Notice that, up to this point, neither work had addressed
portability. With today’s modern languages, there’s the possi-
bility of compiling a parallel source code to different target
architectures, affecting productivity and coding effort.

C. A quantitative approach for measuring portability

A few years ago, Pennycook et al. [6], [13] presented a con-
cise definition for performance portability and an associated
metric that accurately captured the performance and portability
of an application across different platforms. They were aware
that productivity and coding effort measures are inherently
subjective and not adequate to use in order to label some
language as portable or not. They examined the possibility of
delivering high performance portability from a single source
code and retroactively applied this metric to previous research
and numerous programming languages.

To formally quantify performance portability, they defined
some basic terms: a platform is a particular execution en-
vironment; an application is any suite of software that can
accept a given problem as input and produce an output that
can be validated against some existing measure of correctness;
performance is any measurable property of an application’s
correct execution of a problem on a platform; portability is
the ability of an application to execute a problem correctly
on a given set of platforms. Finally, they defined performance
portability as a measurement of an application’s performance
efficiency for a given problem that can be executed correctly
on all platforms of a given set.

There are two metrics for performance efficiency: (1) ar-
chitectural efficiency (achieved performance as a fraction of
“peak” theoretical hardware performance); and (2) application
efficiency (achieved performance as a fraction of best observed
performance). The latter represents the ability of an application
to use the most appropriate implementation for each platform
and the former is the achieved performance in relation to the
roofline model [14].

Let ei(a, p) be the efficiency of application a solving
problem p on platform i. The performance portability PP metric
is the harmonic mean of an application’s efficiency e observed
across a set of platforms H on solving problem p:

PP =


|H|∑

i∈H
1

ei(a, p)

if i is supported ∀i ∈ H

0 otherwise,
(2)

where |H| is the cardinality of H.



Kokkos has been the subject of studies that used this
metric. For example, Kirk et al. [15] investigated different
implementations of TeaLeaf, a mini-application that solves the
linear heat conduction equation. They concluded that Kokkos
version was worse than the set of implementations written in
OpenACC, OpenMP, CUDA and MPI.

D. Productivity and programming effort revisited

Recent studies have revisited productivity and the effort
required to write HPC applications. Harrell et al. [1] developed
metrics of application development productivity, which can
be used to assess how productively a performance portable
application was developed. They claim that the metric for
performance portability in [6] does not help developers decide
which among the several approaches to developing perfor-
mance portable code is most effective.

They tackled the porting process and proposed a measure
of how different the codes for solving a problem p (ported
to various languages) are from each other. They called this
measure code divergence D which is the average of the
pairwise distances between the applications in the set of codes
A:

D(A) =

(
|A|
2

)−1 ∑
{ai,aj}⊂A

d(ai, aj) (3)

Note that A ⊂ Ap, where Ap is the set of all applications
which solve p. The distance d(ai, aj) between applications ai
and aj is the change in the number of LOC normalized to the
smaller (in LOC) application:

d(ai, aj) =
|LOC(ai)− LOC(aj)|

min(LOC(ai),LOC(aj))
(4)

The code divergence does not act as a measure of produc-
tivity, but has the potential to reveal how smooth or tough the
porting effort can be. However, if this measure is sufficiently
low and the application is performance portable, those num-
bers might characterize the adopted parallel language as the
most suited.

The work of Harrell et al. goes beyond as to show metrics
for development cost and developer productivity as well as
to present a “methodology and associated tools for tracking
application performance and portability alongside developer
productivity”. However, their intent on measuring performance
portability is different from the path we take. In our case,
instead of tracking the development process and the coding
effort, our priority was to assess how the performance porta-
bility metric behaves when changing the input size of different
applications and use the results to compare two portable
languages.

III. DEFINITIONS

We keep the definition of application as being any suite of
software that can accept a given problem. On the other hand,
the definition of problem deserves some thought. It is well
understood that an application solves a problem, but what is

the difference between two applications that solve the exact
same problem? Furthermore, can a problem be distinguished
by its input and output data? Can a single problem accept a
variety of input data and produce a variety of output data?
We shall revisit some definitions and reason on how those can
possibly lead to unorthodox uses of performance portability
metrics.

A. What is a problem?

Our definition of problem is as follows: a problem is a
proposed question that requires an algorithm to be solved
correctly. An algorithm has the prerogative of accepting a wide
range of input data and produce verifiable output data. Note
that any chosen algorithm – unless the solution is hard-coded
– has the capability of solving a problem for any valid input
data set. For example, consider the problem of solving the
linear system y = Ax, where y is an input vector and A is an
input matrix. An algorithm can produce a correct output vector
x for any valid A and y. This problem is not constrained by
the size nor the contents of its inputs, regarded that both are
valid (i.e., there’s a solution for the linear system).

Note that the strategy, or the algorithm for solving a given
problem is the identity of an application. As a consequence,
two distinct applications solve the same problem if they use
different algorithms. Going back to the definition in [6]: “two
completely separate source codes that solve the same problem
to satisfactory accuracy are the same application”, unless they
use different algorithms. In our example, one could solve y =
Ax using the conjugate gradient or an LU factorization, thus
having two possible applications that solve the same problem.

B. Metrics for comparing applications
The metrics in equations 2, 3 and 4 are used to compare

codes of a single application, but they can accommodate
different applications that solve the same problem. We’ve
never seen such use of the metrics, but it’s important to make
clear that the purpose of a metric is to quantify how effectively
or productively a problem is solved; and in doing so possibly
comparing different applications.

C. Problem, inputs, outputs and portability

Consider a single application that handles a problem which
takes a set of inputs. This application is written in two
languages, each one capable of generating code for a single
platform. The results generated by those platforms compose
a set of outputs. This application is also written in a portable
language capable of generating code for both platforms, which
then produce the desired, accurate set of outputs. Fig. 1 shows
the whole process. This work is about exercising this process
with two portable languages (Kokkos and OpenACC) and a set
of applications in order to measure performance portability for
varying problem sizes.

IV. PORTABLE LANGUAGES AND BENCHMARKS

A. Kokkos

Kokkos is a C++ template library which was developed
at Sandia National Laboratories and aims to offer means for



Fig. 1. An application written in different languages

scientists to write performance portable codes [4]. It requires
no additional modifications to the base C++ language to
work. Kokkos provides a series of abstractions that allow user
code to be compiled for a variety of architectures. Kokkos
has matured over the past years in that regard, specially
when compiling against the supported Pthreads, OpenMP, and
CUDA backends. If the ongoing development effort contin-
ues, Kokkos shall provide performance portability to future-
generation machines, preventing developers from having to
adopt yet another parallel programming language. Kokkos’
website [16] delivers an overview of language features and
abstractions.

B. SPEC ACCEL

The set of benchmarks chosen for this work covers intra-
node parallelism with the option of offloading the computation
to an accelerator (device) or simply performing the computa-
tion on a CPU (host). The SPEC ACCEL version 1.2 codes
[5] are available in OpenMP Target, OpenCL and OpenACC.
We chose to work with OpenACC. Out of the fifteen codes
written in OpenACC, we picked seven – which are written
in C – and ported them to C++ using Kokkos. The selected
OpenACC benchmarks are shown in Table I.

C. Benchmarks description

Benchmarks ep, cg, sp and bt are part of NAS [17]; Stencil,
lbm and mri-q are part of Parboil [18]. Each application is
briefly described as follows:
• Embarrassingly Parallel (EP): generates n pairs of

random numbers which are uniformly distributed on
the interval (−1, 1). Each pair is tested by Marsaglia’s
polar method [19]. It’s an acceptance-rejection procedure
that works by testing random pairs (xj , yj) to check if
tj = x2j + y2j ≤ 1, for 1 ≤ j ≤ n. If this inequality

TABLE I
OPENACC BENCHMARKS

Application Application Domain

ep Random number generation
cg Conjugate gradient
sp Scalar pentadiagonal solver
bt Block tridiagonal solver for 3D PDE
stencil Thermodynamics
lbm Lattice Boltzmann method
mri-q Medicine

holds, then it can be proved that Xk = xj
√

(−2 ln tj)/tj
and Yk = yj

√
(−2 ln tj)/tj are independent Gaussian

deviates with mean zero and variance one. The code
keeps a tally of all accepted pairs (xj , yj) that lie in the
square annulus l ≤ max(|Xk|, |Yk|) < l+1 for 0 ≤ l ≤ 9
and computes the sum of all deviates generated;

• Conjugate Gradient (CG): is an iterative method for
solving sparse systems of linear equations [20]. This
benchmark is used to compute an approximation to the
smallest eigenvalue of the sparse, symmetric positive
definite matrix A. It solves a linear system of the form
Az = x and uses the inverse power method [21] to find
an estimate of the eigenvalue of A;

• Scalar Penta-diagonal (SP): let u and r be 5x1 vectors
defined at the points of a 3D rectangular grid and K be
a 7-diagonal block matrix of 5x5 blocks. SP solves a 3D
discretization of Navier-Stokes equations: Ku = x. SP
uses the Beam-Warming approximate factorization of K:

K ∼= Tx ∗ Px ∗ T−1x ∗ Ty ∗ Py ∗ T−1y ∗ Tz ∗ Pz ∗ T−1z

Tx, Ty and Tz are block diagonal matrices of 5x5 blocks;
Px, Py and Pz are scalar penta-diagonal matrices. The
resulting system is then solved by inverting the block
diagonal matrices Tx, T−1x ×Ty , T−1y ×Tz and T−1z and
then solving the scalar penta-diagonal systems [22];

• Block Tridiagonal (BT): differs from SP in the factor-
ing of K. It uses Alternating Direction Implicit (ADI)
approximate factorization of K that decouples the x, y
and z dimensions:

K ∼= BTx ∗BTy ∗BTz

BTx, BTy and BTz are block tridiagonal matrices of 5x5
blocks. The resulting system is then solved by computing
the block tridiagonal systems in x, y and z directions
successively [22];

• Stencil: solves a simple 3D heat equation by sweeping
over a spacial grid. The accelerated loop is a fairly simple
7-point stencil operation;

• Lattice Boltzmann Method (LBM): is a technique for
solving the Navier-Stokes equations based on a micro-
scopic model of the moving fluid particles [23]. The
entire grid (lattice) is traversed and each cell uses the
input flows at the previous discrete point in time to
compute the resulting output flows from that cell and
an updated local fluid density (in practice, it’s a 19-point
stencil);

• Magnetic Resonance Imaging (MRI-Q): computes part
of the advanced reconstruction algorithm described in
[24], i.e., the computation of each element of matrix Q,
given by:

Q(Xn) =

M∑
m=1

|φ(km)|2 e(i2πkm·xn)

where “·” denotes the inner product. There are M K-
space sampling locations, with km denoting the location



of the mth sample. Likewise, there are N voxel (volumet-
ric pixel) coordinates, with xn denoting the coordinates
of the nth voxel.

D. Measuring performance portability

We ran the benchmarks on a Linux Ubuntu 18.04.2 LTS on
two different machines equipped with Intel CPUs and NVIDIA
GPUs. The first machine – Exahost – has a dual-socket Intel
Xeon E5-2630 v4 and a Kepler generation NVIDIA Tesla
K80. The second machine – Blaise – has a dual-socket Intel
Xeon E5-2699 v4 and a Pascal generation NVIDIA Tesla
P100 GPU. The ported codes to Kokkos use OpenMP backend
when running on CPUs and CUDA backend when running on
GPUs. There are no tweaks of any portable code for a specific
platform.

We measured the execution time (see appendix B) of each
benchmark for a variety of problem sizes1 in both OpenACC
and Kokkos versions. Reported execution times are the mean
of three runs on each platform and have been rounded to two
decimal places for aesthetics. Tables II, III, IV and V report the
application efficiency computed with these execution times.
We used the application efficiency exclusively for calculating
performance portability; the architectural efficiency is harder
to obtain and wouldn’t be of much use in comparing the two
languages because even the best known performing applica-
tion has low architectural efficiency [6]. In our experiments,
application efficiency offers a practical upper bound, and it
is easily computed based on direct measurements [25]. Table
VI brings resulting performance portability numbers galore,
considering all four platforms.

E. Discussion

This handful of data shall not be overlooked. We present
our conclusions for every benchmark:
• EP: Kokkos performed better than OpenACC on the

CPUs and on the K80 (except for size 1), but OpenACC

1Refer to appendix A for information on compilers and problem sizes.

TABLE II
APPLICATION EFFICIENCY ON XEON E5-2630 V4

App. Input Size
1 2 3 4 5

O
pe

nA
C

C

ep 80.75% 74.86% 83.33% 77.76% 78.84%
cg 97.29% 85.69% 100% 100% 100%
sp 100% 100% 100% 100%
bt 92.23% 71.85% 100%
stencil 30.91% 58.37% 78.42% 100% 100%
lbm 82.72% 97.10%
mri-q 100% 100%

K
ok

ko
s

ep 100% 100% 100% 100% 100%
cg 100% 100% 91.95% 95.69% 95.78%
sp 64.83% 58.89% 69.12% 66.66%
bt 100% 100% 99.25%
stencil 100% 100% 100% 72.32% 57.90%
lbm 100% 100%
mri-q 46.90% 29.06%

TABLE III
APPLICATION EFFICIENCY ON XEON E5-2699 V4

App. Input Size
1 2 3 4 5

O
pe

nA
C

C

ep 82.31% 82.04% 80.24% 77.60% 78.28%
cg 99.16% 94.83% 100% 100% 100%
sp 100% 100% 100% 100%
bt 100% 100% 100%
stencil 100% 100% 100% 100% 100%
lbm 71.91% 98.61%
mri-q 100% 100%

K
ok

ko
s

ep 100% 100% 100% 100% 100%
cg 100% 100% 93.89% 86.30% 98.51%
sp 33.11% 32.37% 48.91% 71.97%
bt 35.29% 70.52% 72.99%
stencil 78.19% 87.97% 69.91% 59.10% 71.52%
lbm 100% 100%
mri-q 81.86% 37.93%

TABLE IV
APPLICATION EFFICIENCY ON TESLA K80

App. Input Size
1 2 3 4 5

O
pe

nA
C

C

ep 100% 83.63% 78.55% 77.47% 76.82%
cg 76.87% 89.90% 95.71% 99.82% 100%
sp 100% 100% 100% 100%
bt 100% 100% 100%
stencil 83.05% 100% 100% 100% 100%
lbm 99.52% 100%
mri-q 83.51% 99.41%

K
ok

ko
s

ep 98.02% 100% 100% 100% 100%
cg 100% 100% 100% 100% 98.23%
sp 27.35% 21.47% 11.93% 11.15%
bt 10.38% 10.99% 7.80%
stencil 100% 91.69% 80.23% 60.43% 58.81%
lbm 100% 98.28%
mri-q 100% 100%

wins on the P100. Kokkos is the best choice, since PP
values are above 90% for Kokkos and 80% for OpenACC;

• CG: Kokkos has the best performance on the GPUs
(except for size 5) and was better than OpenACC for
the smaller sizes (1 and 2) on the CPUs. Observe that
OpenACC becomes more efficient and thus performance
portable as the problem size increases. OpenACC PP
values range from 72% to 100%, reaching over 90% for
sizes 3, 4 and 5;

• SP: OpenACC prevails over Kokkos on all platforms.
Consequently, Table VI shows straight 100% values for
OpenACC on all input sizes, while the best performance
portability of Kokkos is no better than 40%. Furthermore,
Kokkos performance portability decreases as problem
size increases;

• BT: Kokkos was more consistent on the CPUs, but
OpenACC is best overall. Kokkos surpassed OpenACC
running with inputs 1 and 2 on Xeon E5-2630. Poor PP
results are due to poor performance on the GPUs. Once
again, Kokkos’ numbers grew worse as the problem size
increased;



TABLE V
APPLICATION EFFICIENCY ON TESLA P100

App. Input Size
1 2 3 4 5

O
pe

nA
C

C

ep 100% 100% 100% 100% 100%
cg 45.59% 51.34% 73.43% 89.82% 100%
sp 100% 100% 100% 100%
bt 100% 100% 100%
stencil 100% 100% 100% 100% 100%
lbm 98.32% 100%
mri-q 100% 98.70%

K
ok

ko
s

ep 85.67% 78.92% 77.19% 76.92% 76.25%
cg 100% 100% 100% 100% 96.75%
sp 63.74% 43.25% 28.56% 23.36%
bt 17.88% 10.49% 9.98%
stencil 86.10% 79.26% 76.94% 59.20% 60.59%
lbm 100% 90.91%
mri-q 93.28% 100%

TABLE VI
PERFORMANCE PORTABILITY PP

App. Input Size
1 2 3 4 5

O
pe

nA
C

C

ep 89.82% 84.20% 84.76% 82.21% 82.52%
cg 72.32% 75.73% 90.77% 97.20% 100%
sp 100% 100% 100% 100%
bt 97.94% 91.08% 100%
stencil 62.12% 84.87% 93.56% 100% 100%
lbm 86.56% 98.91%
mri-q 95.30% 99.52%

K
ok

ko
s

ep 95.53% 93.74% 93.12% 93.02% 92.78%
cg 100% 100% 96.32% 95.15% 97.30%
sp 40.87% 34.02% 26.01% 24.79%
bt 20.98% 19.00% 15.86%
stencil 90.08% 89.11% 80.38% 62.32% 61.77%
lbm 100% 97.15%
mri-q 73.72% 49.52%

• Stencil: OpenACC performed better on three platforms:
the GPUs and the Xeon E5-2699. Kokkos’ efficiency also
decreases with increasing input: we noticed this is sort of
a trend. PP measures indicate that OpenACC prevails;

• LBM: Kokkos and OpenACC showed competitive per-
formance. Kokkos was a bit better on the CPUs and
the numbers on the GPUs are tight. Portability measures
slightly favor Kokkos;

• MRI-Q: Kokkos is significantly slower on the CPUs,
but competitive on the GPUs. Portability results put
OpenACC as the best choice. Poor results on Xeon E5-
2630 ended up spoiling Kokkos’ portability.

V. ANOTHER METRIC FOR PERFORMANCE PORTABILITY

It should be evident by now that performance portability
depends on the problem size. This was observed in all the
benchmarks tested, and that is a strong evidence that this
metric is sensitive to the input size. The work of Pennycook
et al. [6] does not address how to appropriately use the metric
when there is a set of inputs for the same application.

We do not find a whole set of PP percentages for the same
problem useful for characterizing how effective a portable

parallel programming language is at solving that problem. This
situation motivated us to make an attempt at creating a novel
metric for performance portability which is capable of offering
a single measure for an application stressed by a number of
input sizes and configurations.

A. Shrinking performance portability measures

We adopt the very same definitions of platform, perfor-
mance and portability as in [6], but use our own definition
(see section III) of application. The two functions of per-
formance efficiency (architectural and application efficiency)
proposed in [6] are equally valuable because both efficiency
functions grant the user freedom to select the most appropriate
performance evaluation method. We preserve this flexible
aspect of performance evaluation for our metric. The work in
[25] offers detailed guidance on different ways of calculating
performance.

Since we are comparing performance portable codes, the
idea of code divergence in equation 4 comes in handy because
it compares two implementations of the same problem written
in two different languages [1]. We replace the LOC measure
with a performance metric chosen by the user. That way,
instead of directly computing the architectural or application
efficiency, we calculate the relative error in relation to the best
observed or theoretical hardware performance.

Consider the set Ap of applications that solve problem p;
let fi(a, p, s) be a measure of performance of application a
on solving p on platform i with input size s. We define the
performance distance δ(a, α) between applications a and α as
the relative error in performance. Note that fi(α, p, s) is the
best observed result or the theoretical hardware performance:

δ(a, α) =
|fi(a, p, s)− fi(α, p, s)|

fi(α, p, s)
(5)

We call Divergence RMS ∆RMS the root mean square of
performance distances between a set of input sizes of interest
S:

∆RMS =

√∑
s∈S δ(a, α)

2

|S|
(6)

The root mean square of distances measures the average size
of its entries, i.e., the typical performance distance of the set of
inputs. The RMS is equal to or higher than the arithmetic mean
and that gives more “significance” to the performance dis-
tances obtained. Finally, we define the Performance Portability
Divergence PD as the arithmetic mean of RMS divergences
across a set of platforms H:

PD =

∑
i∈H ∆RMS

|H|
(7)

An obvious thing to notice is that the ideal performance
portability divergence should be zero and the perfect per-
formance portability is 100%. We shall use data on the
benchmarks to demonstrate how to compute and interpret the
performance portability divergence of OpenACC and Kokkos.
We also reason on the implications of using this metric and
try to expose its limitations. As proposed, our results offer a



single measure for estimating the performance portability of
an application over a variety of input data.

B. Performance Portability Divergence of the benchmarks

Table VII shows the ∆RMS and PD values of the bench-
marks calculated with the execution times shown in appendix
B. Kokkos is the best option for ep, cg, and lbm; OpenACC
leads Kokkos on stencil, mri-q, and is a far better option for
sp and bt.
PD values are somewhat “compliant” with the numbers in

Table VI, i.e., they are not conflicting measures. Poor values of
performance portability end up reflecting on bad performance
portability divergence and the other way around is also true.

However, PD is more “pessimistic” because it tends to
punish large performance distances severely. This is the effect
of having an RMS value as ∆; a simple arithmetic mean
would provide lower values. The rationale for penalizing large
performance distances comes from the fact that a portable,
production-level application should be versatile enough to
accept a myriad of input data and this has to be accounted
for in our metric. Finally, since all four platforms are equally
important, the arithmetic mean of ∆RMS values produces a
unique PD across the set H.

C. Discussion

There are two types of performance functions: “higher is
better” and “lower is better”. A consequence of applying the
latter is that the distance is not normalized, i.e., could be
higher than 100%. The execution time falls into this category;
we reached PD values greater than 100% with bt and sp
in Kokkos. Results suggest that it is common to reach over
40% PD (4 cases out of 7). The numbers support the “harsh”
property of PD: it is more challenging to reach nearly 0% for
PD than it is to reach 100% for performance portability.

Similarly to the portability metric in [6], poor measures
are a strong evidence of the potential left for optimization.
We believe that both metrics offer valuable help in providing
a quantitative measure of performance portability useful for

TABLE VII
∆RMS AND PD OF THE BENCHMARKS

App. ∆RMS PDK80 P100 E5-2630 E5-2699

O
pe

nA
C

C

ep 24.02% 0% 26.96% 25.10% 19.02%
cg 14.51% 70.24% 7.57% 2.47% 23.70%
sp 0% 0% 0% 0% 0%
bt 0% 0% 23.14% 0% 5.78%
stencil 9.13% 0% 105% 0% 28.69%
lbm 0.34% 1.21% 14.92% 27.63% 11.02%
mri-q 13.97% 0.93% 0% 0% 3.73%

K
ok

ko
s

ep 0.90% 27.34% 0% 0% 7.06%
cg 0.81% 1.50% 4.82% 7.70% 3.71%
sp 588% 218% 55.48% 155% 254%
bt 966% 764% 0.44% 110% 460%
stencil 44.46% 46.53% 36.74% 42.88% 42.65%
lbm 1.24% 7.07% 0% 0% 2.08%
mri-q 0% 5.09% 190% 116% 78.04%

deciding which parallel language is most suited for the users’
needs and at the same time worthy of optimization efforts. For
example, bt and sp didn’t perform well on Kokkos, as caught
by PD.

As for the remaining benchmarks, Kokkos was best at run-
ning ep, cg and lbm, whose PD stayed below 10%. In mri-q,
OpenACC outperformed Kokkos on the CPUs, compromising
both PP and PD. OpenACC also has an edge in stencil, but its
PD is far from satisfactory.

VI. A FULL APPLICATION

In order to exercise the metrics on a code other than a
benchmark, we elected a production-level wave propagation
code named Fletcher as our real-life example. This application
is a cornerstone of the oil and gas industry. It simulates the
propagation of acoustic waves over time on a 3D anisotropic
media. Anisotropy is limited by a set of tilted transversely
isotropic (TTI) planes. Wave propagation is modeled by cou-
pled pseudo-acoustic PDEs as suggested by Fletcher, Du and
Fowler [26]. Denoting pressure by p(x, y, z, t) and using the
auxiliary variable q(x, y, z, t), the PDEs are

∂2p

∂t2
= v2pxH2p+ αv2pzH1q + v2szH1(p− αq)

∂2q

∂t2
=
v2pn
α
H2p+ v2pzH1q − v2szH2(

1

α
p− q)

(8)

where vpx(x, y, z), vpz(x, y, z) and vsz(x, y, z) are directional
propagation speeds, α is a coupling parameter and the differ-
ential operators H1 e H2 are defined by:

H1 =sin2θcos2φ
∂2

∂x2
+ sin2θsin2φ

∂2

∂y2
+

cos2θ
∂2

∂z2
+ sin2θsin2φ

∂2

∂x∂y
+

sin2θsinφ
∂2

∂y∂z
+ sin2θcosφ

∂2

∂x∂z

H2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
−H1

(9)

where θ and φ are TTI’s dip and azimuth angles and α is
a coupling parameter. Discretization is based on finite differ-
ences, approximating space derivatives by operators of order
eight and time derivatives by second order ones. The original
program was written in C and parallelized by OpenACC.

Five domain sizes have been tested on Exahost and Blaise.
The achieved performance (in GFlop/s) on each platform is
shown in Fig. 2 and Fig. 3. We remind the reader that this
work isn’t about optimizing code; we expect improvements
in Kokkos’ numbers at later stages of development. Clearly,
OpenACC outperforms Kokkos in all cases, which gives us a
straight 100% application efficiency and PP for every media
size. Likewise, all divergences are 0%.

Kokkos’ PP numbers, however, range from 31% to 40% as
shown in Table VIII, demonstrating that PP does change with
problem size, even though Kokkos never dethroned OpenACC
as best observed. Kokkos has reached distinct ∆RMS values
across platforms: 71.32% on Xeon E5-2630; 74.32% on Xeon
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Fig. 3. Performance running on Blaise

E5-2699; 38.62% on K80 and 47.55% on P100. The perfor-
mance portability divergence PD of Kokkos is 57.96%.

Note that, as apposite to the benchmarks, the performance
of Fletcher on a single platform does not change much with
problem size. This is a particular case that has an impact
on PD by producing a smoother value than PP. Nonetheless,
Kokkos would still have to improve on every problem size to
lower its PD values. It seems easier on Fletcher but not so on
size-sensitive applications like the benchmarks.

TABLE VIII
PERFORMANCE PORTABILITY OF KOKKOS

TTI media size
3443 3763 4083 4403 4723

PP 34.41% 38.06% 40.93% 37.50% 31.45%

VII. CONCLUSIONS AND FUTURE WORK

The pursuit of performance portability and ways of measur-
ing it has motivated studies that try to measure performance,
portability, and productivity, or directly make a comparison of
two or more portable languages. We’ve run seven benchmarks
and a full application written in both Kokkos and OpenACC.
That is, two portable languages that can compile down to the
hardware platforms present in this work: Intel Xeon CPUs and
NVIDIA GPUs. In all experiments, performance portability
measures changed with input size, meaning that the best

performing portable language for a given application might
change depending on the input size.

In order to unify varying values of PP, we proposed a novel
metric called Performance Portability Divergence – denoted
by PD – which takes into consideration a user-defined set
of input sizes to quantify the portability of an application.
As opposed to PP, the perfect desirable value of PD is 0%.
From the beginning, measures of PP and PD were supposed to
“agree” since the application of both metrics shall rigorously
use a similar measure of performance (e.g., execution time,
Flop/s, bandwidth, etc).

We concluded that selecting the best language for a given
application is harder when dealing with varying problem sizes.
We do believe that real-life HPC applications are meant to
work effectively for diverse input sizes. The employed metrics
will probably show biased results if the set of inputs is over or
under-representative of actual workloads. We also concluded
that performance portability divergence is extremely sensible
to the set of inputs chosen. We advise considering only
the relevant inputs of a given application. For example, an
application may perform poorly for a particular input size,
causing the performance portability divergence to increase,
regardless of the results from other input sizes.
PD is susceptible to the same criticism as PP when distances

are computed in relation to the best observed performance;
if the best implementation is poor, it is easier to get better
results. The user has the option to use the roofline model, but
this typically provides low efficiency measures as seen in [9],
making it difficult to compare the languages.

We find important to mention that there hasn’t been any
attempt to improve the performance portability of Kokkos
through optimization. The parallel kernels are as similar as
possible to the original version in OpenACC. We are aware
that Kokkos allows use of more advanced features, which were
kept untouched in our work.

A. Future work

A strong reason to extend this work is to try and benefit from
the fact of having a real-life problem to evaluate (Fletcher,
in our case) and change additional parameters such as the
method for measuring performance (use the roofline model)
or confront highly optimized portable implementations with
state-of-the-art – commonly non-portable – legacy applica-
tions, therefore setting the “best observed” measurement to
the uppermost level.

Optimizing the Kokkos version of Fletcher would be a
natural starting line for testing the behavior of our metric.
As seen previously, OpenACC showed good performance, but
there are fine-tuned, heavy-duty versions of Fletcher written
in other languages.

This leads to another approach for future research that
consists of expanding the set of portable languages being
analyzed. As compilers and languages mature fast, more
portable applications which solve the same problem shall
surface, exposing the relevance of having a solid, fair and
meaningful methodology for comparison.
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APPENDIX A
COMPILERS, BENCHMARKS PROBLEM SIZES AND

PARAMETERS

Table IX shows the compilers and flags used to run the
applications on each platform. We worked with Kokkos 2.8.

TABLE IX
COMPILERS AND FLAGS

Compiler Platform Main flags

O
pe

nA
C

C

PGI 18.10

E5-2630
-O3 -acc -ta=multicore

E5-2699

Tesla K80 -O3 -acc -ta=tesla:cc35

Tesla P100 -O3 -acc -ta=tesla:cc60

K
ok

ko
s

GCC 7.3 E5-2630

-O3 -march=native
GCC 6.4 E5-2699

CUDA 9.2.88 Tesla K80

CUDA 10.0 Tesla P100

A. Sizes and configurations

The five input sizes seen in benchmarks ep, cg, sp and bt
correspond to classes W to D, respectively. Details of each
class can be found in www.nas.nasa.gov/publications/npb.html.
The classes we used for sp were W, A, B and C and for bt
we used classes W, A and B.

We run stencil with the same number of iterations (100),
varying the grid sizes: 1282×64, 2562×32, 2562×64, 5122×
32 and 5122 × 64. Input sizes of mri-q are: 323 pixels with
3072 samples, and 643 pixels with 2048 samples. Both inputs
of lbm are 1002 × 130 grids, only the number of iterations
(300 and 5000) and boundary conditions change. In the case
of lbm, and mri-q, we used the input files from SPEC ACCEL;
stencil grid values are generated randomly.

APPENDIX B
BENCHMARKS EXECUTION TIMES

TABLE X
EXECUTION TIMES ON XEON E5-2630 V4 (SECONDS)

App. Input Size
1 2 3 4 5

O
pe

nA
C

C

ep 0.18 1.45 5.00 19.91 302.99
cg 0.06 0.10 7.73 18.57 500.90
sp 0.72 4.60 28.41 122.55
bt 3.90 88.41 357.72
stencil 0.25 0.29 0.37 0.51 0.81
lbm 7.22 99.10
mri-q 0.04 0.12

K
ok

ko
s

ep 0.15 1.09 4.17 15.49 238.88
cg 0.05 0.08 8.41 19.41 522.95
sp 1.11 7.81 41.11 183.84
bt 3.60 63.52 360.43
stencil 0.08 0.17 0.29 0.71 1.40
lbm 5.97 96.22
mri-q 0.08 0.40

TABLE XI
EXECUTION TIMES ON XEON E5-2699 V4 (SECONDS)

App. Input Size
1 2 3 4 5

O
pe

nA
C

C

ep 0.10 0.64 2.22 8.57 132.23
cg 0.08 0.08 4.99 11.32 247.02
sp 0.41 1.67 14.89 81.25
bt 1.13 28.41 134.05
stencil 0.05 0.08 0.11 0.22 0.52
lbm 5.66 65.98
mri-q 0.03 0.07

K
ok

ko
s

ep 0.08 0.53 1.78 6.65 103.51
cg 0.08 0.07 5.32 13.11 250.77
sp 1.23 5.16 30.44 112.89
bt 3.21 40.28 183.64
stencil 0.06 0.09 0.16 0.37 0.73
lbm 4.07 65.07
mri-q 0.04 0.19

TABLE XII
EXECUTION TIMES ON TESLA K80 (SECONDS)

App. Input Size
1 2 3 4 5

O
pe

nA
C

C

ep 0.37 1.54 5.62 21.45 342.91
cg 0.16 0.28 7.72 18.99 929.52
sp 1.54 4.76 20.35 87.55
bt 0.82 9.84 39.19
stencil 0.25 0.29 0.37 0.52 0.81
lbm 11.92 192.79
mri-q 0.15 0.17

K
ok

ko
s

ep 0.38 1.29 4.41 16.62 263.44
cg 0.12 0.26 7.38 18.96 946.27
sp 5.62 22.19 170.60 785.06
bt 7.87 89.56 502.63
stencil 0.21 0.31 0.46 0.86 1.37
lbm 11.86 196.17
mri-q 0.12 0.17

TABLE XIII
EXECUTION TIMES ON TESLA P100 (SECONDS)

App. Input Size
1 2 3 4 5

O
pe

nA
C

C

ep 0.12 0.34 1.05 3.84 59.96
cg 0.07 0.10 1.79 3.70 265.48
sp 0.84 2.08 6.79 27.90
bt 0.25 2.85 12.46
stencil 0.30 0.32 0.37 0.45 0.63
lbm 2.82 40.52
mri-q 0.28 0.32

K
ok

ko
s

ep 0.14 0.43 1.37 5.00 78.63
cg 0.03 0.05 1.32 3.32 274.40
sp 1.31 4.81 23.76 119.42
bt 1.41 27.14 124.89
stencil 0.35 0.41 0.48 0.77 1.04
lbm 2.77 44.57
mri-q 0.30 0.31


