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Abstract—Trying to improve performance, portability, and
productivity of an application presents non-trivial trade-offs,
which are often difficult to quantify. Recent work has developed
metrics for performance portability, as well some aspects of
productivity - in this case study, we present a set of challeng-
ing computational kernels and their implementations from the
domain of multi-material simulations, and evaluate them using
these metrics. Three key kernels are implemented using OpenMP,
OpenMP offload, OpenACC, CUDA, SYCL, and KOKKOS,
and tested on ARM ThunderX2, IBM Power 9, Intel KNL,
Broadwell, and Skylake CPUs, as well as NVIDIA P100 and
V100 GPUs. We also consider the choice of compilers, evaluating
LLVM/Clang, GCC, PGI, Intel, IBM XL, and Cray compilers,
where available. We present a detailed performance analysis,
calculate performance portability and code divergence metrics,
contrasting performance, portability, and productivity.

Index Terms—OpenMP, OpenACC, CUDA, SYCL, KOKKOS,
benchmarking, performance

I. INTRODUCTION

Performance portability is now perhaps more of an issue
than ever. With Moore’s law slowing down [1], and Artificial
Intelligence becoming one of the most important drivers of
high performance computing (HPC) architectures, we are
facing a staggering diversity in HPC hardware. With no clear
successor, CMOS technology is here to stay for at least a
decade, and with transistor sizes no longer becoming smaller
at the rates they used to, we expect further specialisation of
architectures, targeting various narrow application domains
- such as the instructions and circuits already present in
mainstream CPUs (Intel’s VNNI [2]) and GPUs (NVIDIA’s
Tensor Cores [3]).

The US DoE is further accelerating this diversification -
with two pre-exascale machines (Summit and Sierra) already
in place that use IBM CPUs, and NVIDIA GPUs, a number
of large Intel CPU systems, and the planned exascale systems,
one from Intel utilising their as of yet unseen Xe GPUs, and
another from AMD, also utilising CPUs and GPUs. Almost all
of these systems use CPU+accelerator architectures, which in
some sense are similar, but in terms of programmability, they
are quite different. At the same time, CPU-only systems are
not going away either, given the vast amounts of legacy code
- particularly at institutions looking after nuclear stockpiles,
who are some of the main users of multi-material simulations.
Governments and institutions in Europe are also more conser-
vative in their choice of HPC platforms - there are many more
large CPU-only systems there.

This increasing diversity further exacerbates the perfor-
mance, portability, and productivity challenge. While there are
vast performance gains to be had by fine-tuning algorithms for
a particular architecture, there are too many options, and the
lifetime of these codes tend to be far longer than the hardware
itself. Maintaining and updating different specialised versions
of code for the various architectures as they come and go is
simply untenable above a certain size.

There are a staggering number of approaches trying to
address this issue - in the general case there is always a
trade-off between performance, portability and productivity.
Parallel programming approaches are being extended - for
example OpenMP offload support [4], [5], which even though
supports CPUs and GPUs in the same framework, still has
separate pragmas for the two. OpenACC [6] was the first
widely adopted pragma-based approach to program GPUs, but
to this day its main focus is NVIDIA GPUs. The NVIDIA-only
CUDA [7] programming extension of C/C++ has developed a
large software ecosystem, and is well supported, but obviously
not portable. Efforts for a lower-level, but more portable
compute abstraction include OpenCL [8], which has failed
to gain traction in the high performance computing market.
OpenCL also did not really deliver performance portability -
particularly the low-level optimisations have to be specialised
or re-implemented for different targets. SYCL [9] is a (re-
)incarnation of OpenCL with a modern C++ API, which
promises much better programmability, and Intel is adopting
it as OneAPI; a single programming approach for all their
devices. How well it is received and adopted remains to be
seen. KOKKOS [10] and RAJA [11] are C++ portability layers
designed to map to OpenMP and CUDA (allowing for further
lower-level models as well), which do narrow the supported set
of algorithms, but provide reasonable performance portability.
Going even further, Domain Specific Languages (DSLs) focus
on a particular set of algorithms occurring in a given problem
domain, but are able deliver true performance portability.

Performance portability is therefore still a big, unsolved
problem - even its quantification. Recent work by Pennycook
et al. [12] has developed a measure for this, that is currently
the best we have - it gives a single number for how well
a given code runs on different platforms. Another big chal-
lenge is quantifying productivity; how much effort goes into
developing and maintaining a code base. Harrell et al. [13]
published a study on this, trying to identify different factors
involved in the process. A recently released tool, the Code



Base Investigator [14] provides a script to help quantify how
much specialised code exists in a codebase to support different
platforms and optimisations.

Multi-material simulations are an important class of appli-
cations where multiple different materials mix in the same
simulation domain. In its structure, it is a sparse problem,
meaning that in any given small volume of space (e.g. a given
discretisation’s cell) there may be one, or a few materials
present, out of a large number of cells and possible materials.
The implication is that storing state variables for all possible
materials in all cells is extremely wasteful, and usually requires
prohibitively large amounts of memory; therefore in most
cases an irregular “compact” data structure is used, which
only stores non-zero values. Prior work has studied these data
structures, and their performance [15], [16], and our own work
is based on these - we study three typical algorithmic patterns,
their optimisations, and their performance with various paral-
lelisations, compilers, and hardware.

The contributions of this paper are as follows:
1) We develop OpenMP, OpenMP offload, OpenACC,

CUDA, SYCL, and KOKKOS implementations for three
multi-material kernels.

2) We evaluate performance on Intel, IBM, and ARM
CPUs, as well as NVIDIA GPUs, with a number of
different compilers, including GCC, LLVM/Clang, Intel,
Cray, XL, and PGI.

3) We discuss the performance, portability, and productivity
implications and measures following [12], [14].

All source codes used in this paper and the performance data
are available at [17].

The rest of the paper is organised as follows: Section
II presents the studied algorithms and their parallelisations,
Section III briefly summarises prior work on the metrics for
performance, portability and productivity, based on [13], [14].
Section IV presents the performance results, and Section V
presents the discussion. Finally, Section VI draws conclusions.

II. MULTI-MATERIAL ALGORITHMS

Multi-material algorithms are mainly used in multiphysics
applications, where state variables are associated with each
material in each cell. Here, we use density ρC,m, temperature
tC,m, pressure pC,m, and volume VC,m, which are defined for
all cells C and materials m. Volume is generally stored as the
volume of the cell VC and the fractional volume of constituent
materials VfC,m (with their sum in any given cell being 1).
Here, we consider three key algorithms, as described in [15]:

1) Algorithm 1: Compute the weighted average density of
materials in each cell.

2) Algorithm 2: Compute the pressure in each material
contained in each cell using the ideal gas law.

3) Algorithm 3: Compute the weighted average density of
each material over neighbouring cells.

The simplest data storage scheme, commonly referred to
as “full matrix”, has entries for all possible material-cell
combinations, and is commonly represented as a matrix of size

NC × Nm. When there are a large number of materials, but
each cell contains only a small number of different materials,
this storage is prohibitively wasteful, necessitating “compact”
storage formats. Compact storage maintains arrays of size C
for the state variables, as well as for materials - an index in
each cell for the material contained, if there is only one, and an
index into a separate frac data structure if there are multiple.
The materials array is commonly set up to use positive
indexes for material IDs for pure cells, and negative indexes,
which when multiplied by −1, give the position within the
frac data structure for the first material contained within the
cell. For details, see [15].

There are two common ways to store data for mixed cells
in the frac data structure: linked lists, and compressed sparse
row (CSR). In both cases, an entry will contain data about
the material index, the original cell index, the state variables,
and the fractional volume. With linked lists, each fraction
contains a pointer to the next fraction, and with CSR fractions
are grouped and stored contiguously, therefore index ranges
are provided. The linked list version is easier to insert into
or remove from, whereas the CSR version uses slightly less
memory, and allows for easy fission of some loops into pure
and mixed parts (discussed below).

We present pseudocode for the three algorithms here, but
for brevity we only show their “full matrix” formulation -
the ones using compact storage have extra logic for handling
the iteration over materials in a mixed cell, making the code
and the algorithm much more complicated, especially for
Algorithm 3. For full details, please refer to [15], or the actual
implementations available at [17].

Algorithm 1 Algorithm 1: weighted average density of mate-
rials in each cell [15].

for all cells, C, in the mesh do
ave = 0
for all material IDs, m, in the problem do

if VfC,m > 0.0 then
ave+ = ρC,m ∗ VfC,m

end if
end for
ρaveC = ave/VC

end for

Algorithm 2 Algorithm 2: pressure of each material in each
cell [15].

for all cells, C, in the mesh do
for all material IDs, m, in the problem do

if VfC,m > 0.0 then
pC,m = (nm ∗ ρC,m ∗ tC,m)/VfC,m

end if
end for

end for

When values are stored in a compact data structure, there
is further branching in Algorithms 1-3, for pure cells, where



Algorithm 3 Algorithm 3: weighted average density of each
material over neighbouring cells [15].

for all cells, C, in the mesh do
for all neighbours i do

sqrdisti = (xC − xi)2
end for
for all material IDs, m, in the problem do

if VfC,m > 0.0 then
ρsum = 0
Nn = 0
for all neighbours i do

if Vfi,m > 0.0 then
ρsum+ = ρi,m/sqrdisti
Nn+ = 1

end if
end for
ρaveC,m = ρsum/Nn

end if
end for

end for

the state variables are simply indexed with the cell index, and
for mixed cells, where the frac structure has to be traversed.
This introduces further complexity into the code and due to
the divergence, it also maps poorly to vector architectures.
Algorithms 1 and 2 can be formulated in two different ways
when using the compact data structure: (1) a branch in the loop
body, accessing values differently for pure and mixed cells
(referred to as “fusion version”), or (2) one flat loop for pure
cells (potentially performing useless computations on mixed
cells to avoid branching), and one flat loop across mixed cells
(referred to as “fission version”). For Algorithm 2, the second
formulation is particularly efficient, as there are no indirections
or branching needed, making it a largely bandwidth-bound
kernel, at the cost of some extra computations, proportional to
the number of mixed cells.

In summary, we have three algorithms, two variants for the
frac data storage; linked lists and CSR, and fusion/fission
variants of Algorithms 1 and 2.

We evaluate two test problems, both of size 30002 on
a Cartesian grid, with the first (Problem 1) following the
structured material layout in concentric squares as discussed
in [15] (their example is 10002 - we simply replicate it 3
times in each direction), which has 95% pure cells, 4.9% 2-
material cells, 0.06% 3-material, and 0.04% 4-material cells.
The second test case (Problem 2) is randomly generated (with
the same seed for different runs), and reflects a more complex
scenario, with 60% pure cells, 30% 2-material, 5% 3-material,
and 5% 4-material cells.

A. Implementation and Test Problems

The parallelisation of these algorithms across different cells
is straightforward, as there are no dependencies between them.
While it is also possible to parallelise across different materials
within any given mixed cell (with an extra reduction in

Algorithm 1), it is inefficient to do so, as mixed cells only
contain up to 4 materials in our setup. The only exception is
Algorithm 2, where the fission + CSR variant makes it trivial
to parallelise across all cell-material combinations. The devel-
oped OpenMP, OpenMP offload, OpenACC, CUDA, SYCL,
and KOKKOS implementations therefore explicitly parallelise
across cells, and iterations across materials in mixed cells is
done sequentially (except for the aforementioned variant of
Algorithm 3).

We intentionally developed the different variants with as
much code reuse as possible. The code paths for the various
parallelisations are enabled using preprocessor macros, and
are in a single .cpp file for OpenMP, OpenMP offload,
OpenACC, and SYCL, changing only the surrounding loop
structures, not the loop body, and a separate .cu file for
CUDA, as well as a separate file for KOKKOS, due to the
need for using the parentheses operator for accessing data.
This arguably makes some of the code quite difficult to read.
For details, see compact.cpp in [17].

III. PERFORMANCE, PORTABILITY, PRODUCTIVITY
METRICS

In this section, we summarize the key points and the metrics
presented in [12] and [13].

The definition of Performance Portability, as defined in
Pennycook et al. [12]: “A measurement of an application‘s
performance efficiency for a given problem that can be exe-
cuted correctly on all platforms in a given set.”. The metric
described in the paper gives a single value, P (a, p,H), as a
function of a given application a, running a given problem p,
on a set of hardware/software platforms of interest H (where
|H| is the number of platforms).

P (a, p,H) =


|H|∑

i∈H
1

ei(a,p)

if i is supported ∀i ∈ H

0 otherwise,
(1)

which is the harmonic mean of performance efficiencies
ei(a, p) on each platform. There are two common metrics
for performance efficiency on a given hardware (ei): as a
fraction of some peak theoretical performance (e.g. bandwidth
of computational throughput), or as a fraction of “best known
performance” on the given platform. In our work, we use
the first version, and define efficiency on a platform as a
fraction of theoretical peak bandwidth achieved, as our multi-
material kernels have a very low computational intensity, and
are therefore bound by bandwidth and latency - unfortunately
latency is rather difficult to measure quantitatively.

This performance portability metric has the property that it
is zero if the application does not run on any given platform
of interest, and it increases with any performance increases on
any of the platforms. However, it does not consider productiv-
ity - in the extreme case, it still considers completely separate
implementations and optimisations of the same applications
as one. For obvious reasons, working with such a codebase is



very unproductive. A “code divergence” metric was proposed
by Harrell et al. [13], which quantifies the difference, relying
on the number of different lines of code, between variants
targeting different platforms. Code divergence D on a set of
code variants is defined as follows:

D(A) =

(
|A|
2

)−1 ∑
{ai,aj}⊂A

d(ai, aj), (2)

giving the average pairwise distances between all the variants
in A (where |A| is the number of variants). d is defined as the
change in the number of source lines of code (SLOC):

d(a, b) =
|SLOC(a)− SLOC(b)|
min(SLOC(a), SLOC(b))

. (3)

We use the Code Base Investigator tool [14] to calculate
this metric for our applications.

IV. PERFORMANCE RESULTS

We evaluate performance on a number of different plat-
forms, parallel programming approaches, and compilers;

1) ARM: using a single CPU socket in a node of Isambard,
a Cray XC50 system, with 32-core Cavium ThunderX2
processors running at 2.1 GHz, and 128 GB of DDR4-
2666. We evaluate stand-alone OpenMP, and KOKKOS
with OpenMP, with 1,2,4,8 threads per core, using the
Cray compilers (8.7.9), GCC (8.2.0), and LLVM/Clang
(9.0), each with its own implementation of OpenMP.

2) Power 9: a single socket IBM Power 9 CPU with 10
cores, running at 3.8 GHz, with 128 GB of DDR4-2666,
running RHEL 7.5. We evaluate stand-alone OpenMP,
and KOKKOS with OpenMP, with 1,2,4,8 threads per
core, using the GCC (7.3.1) and LLVM/Clang (9.0) com-
pilers, each with its own implementation of OpenMP.

3) Intel Broadwell (BDW): a single socket of Intel Xeon
E5-2660 v4 CPU with 14 cores per socket, running at
2.0GHz, and 64 GB of DDR4-2666, running Debian 9.
We use 2 threads per core with stand-alone OpenMP,
and KOKKOS with OpenMP, and compile with Intel
2018.2, GCC (8.1.0), and LLVM/Clang (9.0), each with
its own implementation of OpenMP. We also evaluate
performance with SYCL, with Intel’s LLVM implemen-
tation and ComputeCpp.

4) Intel Skylake (SL): a single socket of Intel Xeon Silver
4116 CPU with 12 cores per socket, running at 2.10GHz,
and 96 GB of DDR4-2666, running Debian 9. We
use 2 threads per core with stand-alone OpenMP, and
KOKKOS with OpenMP, and compile with Intel 2018.2,
GCC (8.1.0), and LLVM/Clang (9.0), each with its own
implementation of OpenMP. We also evaluate perfor-
mance with SYCL, with Intel’s LLVM implementation
and ComputeCpp.

5) Intel KNL: an Intel Xeon Phi x7210 running at 1.3
GHz, and allocating memory in the 16 GB MCDRAM,
running Debian 9. We evaluate 1,2,4 threads per core
with stand-alone OpenMP, and KOKKOS with OpenMP,

TABLE I
THEORETICAL BANDWIDTH NUMBERS FOR THE TESTED PLATFORMS

(SINGLE SOCKET) IN GB/S

ARM Power 9 Broadwell Skylake KNL P100 V100
144 170 71 107 490 732 900

and compile with Intel 2018.2, GCC (8.1.0), and
LLVM/Clang (9.0), each with its own implementation
of OpenMP.

6) NVIDIA P100: a PCI-e card with 16 GB memory,
running at 1.328 GHz, with CUDA 9.2. We evaluate
OpenACC with PGI compilers 18.10, OpenMP offload
in LLVM/Clang (9.0), CUDA compiled with nvcc (9.2)
or LLVM/Clang (9.0), and KOKKOS compiled with
nvcc. We also evaluate performance with SYCL, with
hipSYCL [18] and ComputeCpp [19].

7) NVIDIA V100: a PCI-e card with 16 GB memory,
running at 1.245 GHz, with CUDA 9.2. We evaluate
OpenACC with PGI compilers 18.10, OpenMP offload
in LLVM/Clang (9.0), and CUDA compiled with nvcc
(9.2) or LLVM/Clang (9.0), and KOKKOS compiled
with nvcc. We also evaluate performance with SYCL,
with hipSYCL and ComputeCpp.

The maximum theoretical bandwidth for each platform is
given in Table I. First, we present results from the best
algorithmic variant with each platform+compiler combination
in Figures 1 and 2, running Problems 1 and 2. Results with
KOKKOS are shown separately in Figure 3, and discussed in
Section IV-A. Performance is shown as the fraction of peak
bandwidth achieved.

Algorithms 1 and 2 are clearly bandwidth-bound, and they
achieve a large fraction of peak with most platforms and
compilers. The best fraction of peak is consistently achieved
on the ARM system, and the second-best on Power. On
Intel systems, and the KNL in particular, the Intel compilers
outperform others, but overall utilisation is lower compared
to other hardware - however, while on ARM and Power,
efficiency goes down slightly when moving from Problem 1
to 2, efficiency on Intel goes up (KNL+Intel especially).

Algorithm 3 has very low utilisation, due to its irregularity
there are many branch mispredictions, and it is quite unfriendly
to vectorisation. The Intel compiler is capable of vectorising
computations across adjacent cells, while the others were not
- vectorising across different materials in the same cells is
inefficient, particularly with longer vectors, due to the low
trip count (<= 4). Problem 1 has a slightly structured layout
of materials, and few mixed cells (5%), whereas Problem
2 is fully random and has 40% mixed cells. The differ-
ence shows in performance particularly on Intel hardware;
on the Broadwell platform, vectorisation (256 bit AVX2)
does improve performance and on Problem 1, it achieves a
reasonable fraction of peak (27%). On Skylake, vectorisation
degrades performance, and the low utilisation of the double
width vectors (512 bit AVX512) significantly affects overall
efficiency as well. On the KNL (which also has 512 bit
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Fig. 1. Performance efficiency (fraction of peak performance) of the 3 multi-material algorithms on different CPU architectures, parallelisations
and compilers, on Problem 1 and 2.

vectors) vectorisation is needed, but even so, efficiency is low.
The Intel compilers’ advantage on these platforms is clearly
in its ability to vectorise - without vectorisation (on Skylake),
or when vectorisation efficiency is lost due to irregularity,
performance with other compilers and parallelisations is quite
close. ARM and Power9 both have 128 bit vector units, and
therefore are much less affected by a lack of vectorisation,
and they have less aggressive branch prediction as well, which
means that while on Problem 1 they achieve lower efficiency
than Intel hardware, there is very little loss (5-15%) when
moving to Problem 2 compared to Intel’s (40-75%), where
they achieve higher efficiency in comparison.

The best performing algorithmic variant varies widely with
architectures and compilers.

On ARM, Algorithm 1 and Problem 1 perform best with a
CSR+fission variant by a wide margin (15%) with GCC and
Clang, whereas with Cray it is 17% slower than the other
variants - but overall the best performing ones are within
6% of each other. Running Problem 2, all three compiler
perform best with linked lists+fusion (again within 6% of
each other). On Algorithm 2 and Problem 1, there is very
little difference, but on Problem 2, the CSR+fission variant
outperforms others by 20-35% (with up to 10% difference
between compilers). With Algorithm 3 and Problem 1, there
is again very little difference, but moving to Problem 2, linked

lists+fusion outperforms others 20-30% (compilers are within
6% of each other). Overall, there is no clearly better compiler,
each is best on a different algorithm.

On Power, the variations are significantly lower than on
ARM, but we see the same data structures performing best
on the same algorithms and problems. GCC outperforms
Clang by 6% overall. Based on prior experience [20] the
IBM XL compilers generate more efficient code, however,
we have been unable to configure the OpenMP environment
(for thread binding) on the test machine to achieve reasonable
performance, therefore we omit those results.

On Intel platforms, the Intel compilers far outperform all
other compilers - on the KNL especially. We again see
different problems performing best with different algorithmic
variants. On the KNL, Clang and GCC perform within 5%,
but are slower than Intel by 51% on average. On Broadwell
the gap narrows significantly, and they perform within 7%
of each other for Algorithms 1 and 2, but for Algorithm
3, Intel is 38% faster on Problem 1, but 25% slower on
Problem 2 when vectorisation is enabled. Currently, SYCL
implementation s are 5-15% slower than OpenMP ones, but
they exhibit the same algorithmic variant preferences as seen
with OpenMP. Skylake behaves similarly to Broadwell, except
even on Problem 1, Algorithm 3 performs worse with SIMD.

Moving to GPUs, we see very good bandwidth utilisa-
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Fig. 2. Performance efficiency (fraction of peak performance) of the 3 multi-material algorithms on different GPU architectures, parallelisations
and compilers, on Problem 1 and 2.

tion for Algorithms 1 and 2 for most compilers, except
XL+OpenMP offload, and the ComputeCpp SYCL implemen-
tation (which at this stage is highly experimental). While on
CPUs, efficiency of Algorithms 1 and 2 largely improved
when moving from Problem 1 to 2, there is a slight reduction
observed here (around 10%). The V100 overall achieves a
higher efficiency, on average by 15%. Algorithm 3 once again
achieves a small fraction of peak performance, with the best
being CUDA code compiled with NVCC - 25% on the V100
and 12% on the P100. Most other compilers perform within
10% of each other. Moving to Problem 2 again significantly
reduces efficiency due to the additional divergence - efficiency
is between 6-8% on the V100 and 3-4% on the P100 -
with the notable exception of CUDA compiled with Clang
outperforming others by 20% (likely due to better ILP).

The performance of different data structures and algorithmic
variants once again varies significantly - for Algorithm 1
and Problem 1, CSR+fission performs best (7-20%), but with
Problem 2, it’s linked lists+fusion (5-15%). For Algorithm 2,
CSR+fission performs best in both problems by a margin of
5-30%, and with Algorithm 3, linked lists+fusion performs
better on both problems (15-20%).

A. KOKKOS results

We test the OpenMP and the CUDA capabilities in
KOKKOS to run the same source code on the various plat-
forms - as previously, we compile with GCC and Clang,
and Cray/Intel where available. Overall, the behaviour of the
code follows the hand-written OpenMP and CUDA imple-
mentations, with only a slight degradation in performance,
as reported in Figure 3. As there is slightly less control
over vectorisation when using KOKKOS, there is very little
difference between compilers - especially with Intel, which
does outperform others in the hand-written OpenMP imple-
mentations. A notable difference is on the Intel KNL plat-
form, where despite enabling the experimental HBW (high-
bandwidth memory) support, we still see low efficiency with
Intel and GCC compilers - with Clang however, performance
exceeds that of the hand-written OpenMP implementation.

V. DISCUSSION

The results reported show that performance depends on a
large number of factors, that are often at odds with each other.
Diverse algorithms make up an application, and each of these
algorithms perform differently given different data structures,
optimisations, parallelisations, and compilers - all of which
may also depend on the input problem.
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Fig. 3. Performance efficiency (fraction of peak performance) of the 3 multi-material algorithms on different architecture running KOKKOS,
on Problem 1 and 2.

TABLE II
BEST EFFICIENCY (FRACTION OF PEAK PERFORMANCE) ON EACH PLATFORM FOR THE TWO PROBLEMS, AND THE PERFORMANCE PORTABILITY METRIC

ARM Power 9 Broadwell Skylake KNL V100 P100 P
Method+Compiler OMP+Clang OMP+Clang OMP+Intel OMP+Intel OMP+Intel CUDA+NVCC CUDA+Clang
Problem 1 0.52 0.54 0.36 0.51 0.39 0.71 0.56 0.49
Problem 2 0.49 0.39 0.42 0.46 0.36 0.56 0.44 0.44

Measuring performance portability is thus not obvious -
while the metric does distinguish between running the appli-
cation on different problems, it does not consider compilers
and parallel programming methods. In the simplest case, we
can calculate the overall performance portability, by averaging
across the three algorithms, and picking the best results for
each hardware platform. Individual efficiencies and the metric
is shown in Table II - Problem 2 has a lower value due to the
worse performing Algorithm 3. It is clear that the OpenMP
and the CUDA parallelisations are the best performing ones
on CPUs and GPUs respectively - however, the implemen-
tation and the code for these two look very different. While
KOKKOS does have a single source code, its performance is
overall slightly lower - for Problem 1, only 6% (0.46), but for
Problem 2, by 22% (0.36).

Productivity is the third cornerstone, and it is a key factor
to how well a given codebase can adapt to new hardware
architectures. From the perspective of performance portabil-
ity, it is still possible to have a range of implementations

TABLE III
DISTANCE MATRIX FOR DIFFERENT IMPLEMENTATIONS

CUDA ACC OMP+off KOK SYCL OMP
CUDA 0 1 1 1 1 1
OpenACC 1 0 0.06 1 0.46 0.06
OpenMP+off 1 0.06 0 1 0.45 0.04
KOKKOS 1 1 1 0 1 1
SYCL 1 0.46 0.45 1 0 0.46
OpenMP 1 0.06 0.04 1 0.46 0

for different target architectures - both in different parallel
programming tool, and code specialisations using the same
tool. However, such a codebase severly impacts productivity;
e.g. making changes in an algorithm requires modifying all
its different implementations. Excessively specialised code
paths also impact the readability and understandability of the
code. Thus, having a single codebase, with minimal clutter is
desired. This of course presents a trade-off with performance
portability.



Fig. 4. Dendrogram of the code divergence between different imple-
mentations

TABLE IV
FRACTION OF PEAK PERFORMANCE, AND PERFORMANCE PORTABILITY

METRIC OF INDIVIDUAL PROGRAMMING MODELS ON PROBLEM 1

OpenMP OpenACC CUDA SYCL KOKKOS
ARM 0.52 X X X 0.55
Power9 0.54 X X X 0.51
KNL 0.36 X X X 0.35
Broadwell 0.51 X X 0.45 0.46
Skylake 0.39 X X 0.35 0.37
V100 0.66 0.67 0.71 0.68 0.62
P100 0.51 0.54 0.56 0.55 0.51
Portability 0.48 0.59 0.62 0.48 0.46

To have a grasp on productivity, we turn to the code diver-
gence metric between different versions. The metric is com-
monly used to determine divergence in the same programming
model (e.g. OpenMP), when targeting different architectures
(e.g. different generations of GPUs). As in our implementa-
tion, we do no such specialisation (except for OpenMP and
OpenMP offload), we instead study the divergence between
different programming models.

Running the computational code (omitting the file read-
in) through the Code Base Investigator, yields a distance
matrix shown in Table III, and the dendrogram in Figure
4. Unsurprisingly, divergence is greatest with CUDA and
KOKKOS, as both require a completely different source file -
the former due to the outlined kernels, memory management,
and kernel launches, and the latter due to the need for
using the parentheses operator to access data. The second-
largest divergence is with SYCL, which requires considerable
setup code, but the body of the loops is the same as with
OpenMP and OpenACC. Finally, OpenMP, OpenMP offload,
and OpenACC are only different in the pragmas they use for
data movement and the description of parallelism.

These results prompt the question of what performance and
portability would be if we reduced code divergence. This is of
course the main goal of portability libraries such as KOKKOS
or RAJA. For our experiments, getting rid of the CUDA

TABLE V
FRACTION OF PEAK PERFORMANCE, AND PERFORMANCE PORTABILITY

METRIC OF INDIVIDUAL PROGRAMMING MODELS ON PROBLEM 2

OpenMP OpenACC CUDA SYCL KOKKOS
ARM 0.49 X X X 0.45
Power9 0.39 X X X 0.42
KNL 0.42 X X X 0.22
Broadwell 0.46 X X 0.39 0.40
Skylake 0.36 X X 0.28 0.32
P100 0.56 0.50 0.56 0.56 0.47
V100 0.42 0.43 0.44 0.44 0.40
Portability 0.43 0.46 0.49 0.39 0.36

implementation would significantly reduce divergence - while
it is the best performing version on GPUs, it only runs on
GPUs. OpenMP and KOKKOS are the most obvious choices
- while with OpenMP, its CPU and offload versions do not use
the same pragmas, there is very little code divergence. If we
were to rely solely on SYCL, that would remove divergence
altogether, however currently the ARM, Power 9, and KNL
platforms do not officially support it - something we expect
to change in the future. Table IV (Problem 1) and Table V
(Problem 2) display efficiencies and performance portability
metrics for different programming models - omitting platforms
that are not supported. Indeed, compared to the performance
portability metric of 0.49/0.44, the OpenMP model sacrifices
very little in performance (0.48/0.43), but supports all the plat-
forms. Similarly, KOKKOS supports all platforms, at a slightly
larger performance loss (0.46/0.36), particularly on Problem 2.
SYCL has the same performance portability, though currently
supports only a subset of platforms. While CUDA and Ope-
nACC have better portability, they only support GPUs, which
is not expected to change.

VI. CONCLUSIONS

We have carried out a thorough benchmarking of OpenMP,
OpenMP offload, CUDA, OpenACC, SYCL, and KOKKOS
parallelisation methods on a variety of hardware architectures
and compilers, on three key multi-material kernels, and their
variants. We demonstrated that the choice of algorithmic
variant, compiler, runtime environment, and parallelisation
approach is highly non-trivial, and may lead to significant
differences in performance. In our study, while data structures
are mostly incompatible with each other (linked lists vs.
CSR), the fusion and fission algorithmic variants are not.
Conversion between different multi-material data structures
is usually prohibitively expensive, and compiling different
algorithms with different compilers is also quite challenging -
and sometimes not possible.

The availability of compilers is also an issue. Cray com-
pilers are exclusively available on Cray machines, an IBM’s
XL compilers only on IBM systems. GCC is available on
practically all platforms, and Intel compilers are also available
in most clusters. There is a considerable push to integrate
new parallelisations, and generally improve the performance
of LLVM/Clang - it is already the compiler with the widest
range of supported platforms - CUDA and OpenMP offload



support are already officially supported, and Intel’s SYCL
implementation will eventually be pulled in. Its performance
is already quite promising, and on par with others - except in
the area of auto-vectorisation for CPUs, where Intel compilers
are still the best by far.

OpenMP as a programming model has proved it can adapt
to new hardware, though it, and its implementations, are
always behind the cutting edge in terms of supporting new
features. In our tests, its performance was very competitive to
lower-level approaches, such as CUDA. The latest emerging
technology, SYCL, is still in its early stages in terms of
compiler and hardware support, but it has proven quite flexible,
and has significant traction. The performance of current SYCL
implementations is still lagging behind other more established
programming models - and it struggles with the same problem
as OpenCL did - portability does not mean performance
portability.

Performance portability metrics were calculated, and are
particularly interesting when contrasted with code divergence
metrics - giving up a small amount of performance can
significantly reduce divergence.

While maintainability and general readability can be signifi-
cantly affected by a larger code divergence, another factor that
has huge impact is the readability of the “science code” itself
- which in our study was largely unchanged between paral-
lelisations. Because of the different data structure variants and
the algorithmic variants, as well as the complexity of handling
mixed and pure cells slightly differently (not numerically, just
in terms of accessing different arrays), this science code is
also very hard to read and understand. This has prompted us
to start developing a Domain Specific Library targeting multi-
material data structures and algorithms [21], which abstracts
the specific data structure away, significantly simplifying sci-
ence code. We are currently working on generating code
automatically that matches the hand-written implementations
discussed in this paper.
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APPENDIX A
ARTIFACT DESCRIPTION APPENDIX: PERFORMANCE

PORTABILITY OF MULTI-MATERIAL KERNELS

A. Abstract

This artifact comprises the source code, datasets, and build
instructions on GitHub that can be used to reproduce our
results presented in our P3HPC 2019 paper.

B. Description
1) Check-list (artifact meta information):
• Algorithm: Multi-material kernels
• Program: C/C++/CUDA code
• Compilation: Intel 2018.2, Cray 8.7.9, GCC 8.2/7.3.1,

LLVM/Clang 9.0
• Data set: either auto-generated, or available at https://

github.com/lanl/MultiMatTest/blob/master/volfrac.dat.tgz
• Run-time environment: Operating systems described in

Section IV or the paper
• Hardware: described in SectionIV of the paper
• Execution: using GNU make - OMP_NUM_THREADS=XX
CC=compiler make test_cpu for OpenMP tests,
CC=compiler make test_acc for OpenMP offload
and OpenACC tests, CC=compiler make test_sycl
for SYCL tests, and CC=compiler make test_gpu for
CUDA tests.

• Output: Elapsed times and bandwidth for the algorithmic
variants and inputs.

• Experiment workflow: clone sources from GitHub, select
compiler (e.g. clang++), and run the make commands

• Experiment customization: Edit flags in Makefile
• Publicly available?: Yes
2) How software can be obtained (if available): Available

on GitHub: https://github.com/reguly/multimaterial
3) Hardware dependencies: Runs on any system with at

least 10GB or RAM.
4) Software dependencies: Requires Linux, and at least one

of the OpenMP-enabled compilers described in Section IV of
the paper. KOKKOS tests require a KOKKOS installation.

5) Datasets: When the compiled binaries are executed with
no, or 2 arguments, a “volfrac.dat” input file is expected, one
can be downloaded from https://github.com/lanl/MultiMatTest/
blob/master/volfrac.dat.tgz. When three extra arguments are
provided, a random problem is generated with fractions for
2-material, 3-material, and 4-material cells respectively. For
examples, see the Makefile.

C. Installation

No installation required.

D. Experiment workflow

After cloning the GitHub repository, use GNU make
- OMP_NUM_THREADS=XX CC=compiler make
test_cpu for OpenMP tests, CC=compiler make
test_acc for OpenMP offload and OpenACC tests,
CC=compiler make test_sycl for SYCL tests, and
CC=compiler make test_gpu for CUDA tests. XX
should be replaced with the number of cores to be used.
Thread binding is done with numactl or taskset - please
edit the NUMA field in the Makefile accordingly. To set

the compiler, use CC=compiler, which could be one
of g++, clang++, icpc, pgc++, xlc++, CC,
syclcc-clang, compute++.

E. Evaluation and expected result

The makefile procedure will run a set of tests with different
algorithmic variants and the file input, as well as the random
input. Performance is printed for the three kernels: timings as
well as bandwidth. Bandwidth results are reported as a fraction
of the peak in the paper - so the bandwidth output of the runs
should be divided by the peak bandwidth of the given platform.

F. Experiment customization

Compiler flags can be customized in the Makefile.


