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Abstract—Diversity among supported architectures in current
and emerging high performance computing systems, including
those for exascale, makes portable codebases desirable. Portabil-
ity of a codebase can be improved using a performance portability
layer to provide access to multiple underlying programming mod-
els through a single interface. Direct adoption of a performance
portability layer, however, poses challenges for large pre-existing
software frameworks that may need to preserve legacy code
and/or adopt other programming models in the future. This
paper describes an approach for indirect adoption that introduces
a framework-specific portability layer between the application
developer and the adopted performance portability layer to help
improve legacy code support and long-term portability for future
architectures and programming models. This intermediate layer
uses loop-level, application-level, and build-level components to
ease adoption of a performance portability layer in large legacy
codebases. Results are shown for two challenging case studies
using this approach to make portable use of OpenMP and CUDA
via Kokkos in an asynchronous many-task runtime system,
Uintah. These results show performance improvements up to 2.7x
when refactoring for portability and 2.6x when more efficiently
using a node. Good strong-scaling to 442,368 threads across 1,728
Knights Landing processors are also shown using MPI+Kokkos
at scale.

Index Terms—Frameworks, Parallel Architectures, Parallelism
and Concurrency, Portability, Software Engineering

I. INTRODUCTION

For large-scale simulation, the portability of a codebase is
becoming more important due to the variety of architectures
being introduced in current and emerging high performance
computing (HPC) systems. Among current systems, the Top
10 of June 2019’s Top500 list [1] includes heterogeneous
IBM- and NVIDIA-based systems, Sunway-based systems,
Intel Xeon-based systems, and Intel Xeon Phi-based systems.
Forthcoming exascale systems continue this trend with systems
such as the DOE Aurora [2] and DOE Frontier [3] to include
Intel- and AMD-based GPUs, respectively. Such variety com-
plicates programming model selection for codebases looking
to maintain long-term portability across major HPC systems.

Programming model selection is simplified using a perfor-
mance portability layer (PPL). Performance portability layers
provide abstractions (e.g., parallel loop statements) that allow
developers to use a single interface to interact with multi-
ple underlying programming models (e.g., CUDA, OpenCL,
OpenMP, etc) through PPL-specific back-ends. This approach
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Fig. 1. Structure of Uintah’s intermediate portability layer.

eases adoption of multiple programming models by reducing
the amount of duplicated code and the knowledge required
of underlying programming models by offloading low-level
implementation details to the performance portability layer.

Direction adoption of a performance portability layer, how-
ever, poses challenges for large pre-existing software frame-
works that may need to preserve legacy code and/or adopt
other programming models in the future (e.g., a new pro-
gramming model needed to support a novel architecture). This
is a result of reliance on the performance portability layer
to provide support for new underlying programming models.
Such challenges are complicated in large legacy codebases
where multiple refactors are not feasible and even one refactor
may require a significant investment.

These challenges are addressed here using an indirect adop-
tion approach that introduces a framework-specific portability
layer between the application developer and the adopted per-
formance portability layer. Figure 1 shows an example of such
an intermediate layer in the context of this work. Much like
how a performance portability layer eases investment in mul-
tiple programming models, a framework-specific intermediate
portability layer is needed to ease investment in a performance
portability layer.

The goal of this intermediate layer is for application de-
velopers to, hopefully, need only adopt the layer once to
support current and future interfaces to underlying program-
ming models. For application developers, this layer allows
for easy adoption of underlying programming models without
requiring knowledge of low-level implementation details. For
infrastructure developers, this layer allows for easy addition,
removal, and tuning of interfaces behind-the-scenes in a single
location, reducing the need for far-reaching changes across
application code.

This paper describes implementation of such a framework-



specific portability layer used to address performance porta-
bility layer limitations for legacy code. This intermediate
layer consists of three components: (1) loop-level support
providing application developers with framework-specific ab-
stractions (e.g., generic parallel loop statements) that map
to interface-specific abstractions (e.g., PPL-specific parallel
loop statements), (2) application-level support that includes a
tagging system to identify which interfaces are supported by a
given loop, and (3) build-level support that includes selective
compilation of loops to allow for incremental refactoring and
simultaneous use of multiple underlying programming models
for heterogeneous HPC systems.

This design is informed by a multi-year Kokkos C++
library [4] adoption effort adding portable support for OpenMP
and CUDA in a complex real-world application and asyn-
chronous many-task runtime system, the Uintah Computa-
tional Framework [5]. This ongoing effort has been non-trivial
due to the codebase: (1) consisting of 1-2 million lines of
complex code, (2) maintaining a divide between application
code, where framework-specific abstractions are needed, and
infrastructure code, where interface-specific abstractions are
implemented, (3) having hundreds of pre-existing loops to
port in application code, (4) being under active development
with many contributors, and (5) having a pre-existing userbase
to support. The resulting approach aims to ease performance
portability layer adoption in similar codebases and help im-
prove legacy code support and long-term portability for future
architectures and programming models. Though adoption has
been limited to Kokkos, high-level ideas associated with this
approach are broad enough to apply to performance portability
layers offering similar parallel loop statements such as RAJA,
as will be discussed in Section V.

To demonstrate Kokkos capabilities, two case studies using
this approach are examined for challenging calculations mod-
eling the char oxidation of coal particles and radiative heat
transfer in large-scale combustion simulations predicting per-
formance of a next-generation, 1000 MWe ultra-supercritical
clean coal boiler. These case studies show portable use of
OpenMP and CUDA via Kokkos across multicore-, many-
core-, and GPU-based nodes using a single implementation.
The associated refactors have allowed for performance im-
provements up to 2.7x when refactoring for portability and
2.6x when more efficiently using a node to be achieved at the
node-level. At scale, the use of MPI+Kokkos has allowed for
good strong-scaling to 442,368 threads across 1,728 Knights
Landing processors to be achieved.

The remainder of this paper is structured as follows. Sec-
tion II provides an overview of the Uintah Computational
Framework. Section III provides an overview of the Kokkos
C++ library. Section IV outlines the history and current state
of Uintah’s support for Kokkos. Section V discusses direct
adoption challenges and provides an overview of an indirect
adoption approach in the context of Uintah and Kokkos. Sec-
tions VI through IX discuss loop-level, application-level, and
build-level details for easing adoption of a portability layer.
Section X presents single-node results for case studies using

the char oxidation model. Section XI presents single-node and
multi-node results for case studies using the radiation model.
Section XII suggests potential challenges moving forward and
Section XIII concludes this paper.

II. THE UINTAH COMPUTATIONAL FRAMEWORK

The Uintah Computational Framework is an open-source
asynchronous many-task (AMT) runtime system and block-
structured adaptive mesh refinement (SAMR) framework spe-
cializing in large-scale simulation of fluid-structure interaction
problems. These problems are modeled by solving partial
differential equations on structured adaptive mesh refinement
grids. Uintah is based upon novel techniques for understanding
a broad set of fluid-structure interaction problems. [5]

Through its lifetime, Uintah has been ported to a diverse
set of major HPC systems. For multicore systems, good
scaling has been shown to 96K, 262K, and 512K cores on
the NSF Stampede, DOE Titan, and DOE Mira systems,
respectively [5]–[7]. For many-core systems, good strong-
scaling has been shown to 1,728 Knights Landing processors
on the NSF Stampede 2 system [8] and 128 core groups
on the NRCPC Sunway TaihuLight system [9]. For GPU-
based systems, good strong-scaling has been shown to 16K
GPUs [10] on the DOE Titan system.

Uintah is one of many AMT runtime systems and SAMR
frameworks. Examples of similar AMT runtime systems in-
clude Charm++ [11], HPX [12], Legion [13], PaRSEC [14],
and StarPU [15]. Examples of similar SAMR frameworks
include BoxLib [16] (superseded by AMReX [17]) and Cac-
tus [18]. An analysis of performance portability for represen-
tative AMT runtime systems, including Uintah, can be found
in a recent technical report [19]. A review of representative
SAMR frameworks, including Uintah, can be found in a recent
survey [20].

A key idea maintained within Uintah is that application
developers are isolated from infrastructure code. This is ac-
complished using an AMT-based approach to overdecompose
application code into tasks and the computational domain into
groups of individual cells, which tasks iterate over, to increase
node-level parallelism. This approach is used to simplify
development while easing use of the underlying hardware for
application developers. For application developers, this divide
allows them to focus on writing loop-based tasks rather than
building an understanding of low-level execution details (e.g.,
data access patterns, load balancing, task scheduling). For
infrastructure developers, this divide allows for fine-tuning of
such details to be managed in a central location, reducing the
need for far-reaching changes across application code.

The topmost layer of Uintah, application code, consists of
simulation components such as ARCHES [21], which has been
the focus of Kokkos porting efforts and is a Large Eddy Sim-
ulation (LES) code used to model heat, mass, and momentum
transport in turbulent reacting flows with participating media
radiation. Application code is decomposed into individual
tasks that correspond to, for example, physics routines that are
executed on either the host or device. The resulting collection



of tasks is compiled into a task graph and dynamically
executed by the bottommost layer, infrastructure code, in an
asynchronous out-of-order manner with implicit work stealing
using the underlying runtime system. Execution is managed
by the task scheduler, which interacts with per-MPI process
task queues to select and execute ready tasks (e.g., tasks with
satisfied data dependencies). Framework-specific abstractions
(e.g., Uintah-specific parallel loop statements) are needed in
individual tasks corresponding to portions of application code.
Interface-specific abstractions (e.g., Kokkos views) are im-
plemented in infrastructure immediately surrounding running
tasks (e.g., the task scheduler and data warehouse).

III. THE KOKKOS C++ LIBRARY

The Kokkos C++ library [4] is an open-source C++ pro-
gramming model developed at Sandia National Laboratories
for writing portable, thread-scalable code optimized for a
diverse set of architectures supported in major HPC systems.
This programming model is part of the Kokkos C++ Per-
formance Portability Programming EcoSystem, which addi-
tionally provides developers with Kokkos-aware algorithms,
math kernels, and tools. Kokkos is one of many programming
models offering a single interface to multiple underlying
programming models (e.g., CUDA, OpenCL, OpenMP, etc).
Examples of similar programming models include OCCA [22],
RAJA [23], and SYCL [24].

A key idea among performance portability layers is use
of back-ends to manage execution and memory in a portable
manner. In the case of Kokkos, these back-ends are mapped
to abstractions providing developers with portable parallel
execution patterns (e.g. parallel for, parallel reduce, paral-
lel scan) and data structures (e.g., Kokkos Views). These
fundamental abstractions allow Kokkos to manage both where
and how: (1) patterns are executed and (2) data is stored and
accessed. Note, Kokkos back-ends to OpenMP and CUDA
are referred to throughout this paper as Kokkos::OpenMP and
Kokkos::CUDA, respectively. More details on Kokkos usage
can be found on the Kokkos GitHub [25], [26].

Uintah has adopted Kokkos to extend its codebase in a
portable manner to multicore-, many-core-, and GPU-based
systems. Specifically, to: (1) avoid code bifurcation when
extending Uintah to accelerators and many-core devices with
CUDA and OpenMP, respectively, (2) use a single interface to
interact with multiple underlying programming models, and
(3) offload low-level implementation details to Kokkos. This
adoption has also allowed for a reduction in the gap between
development time and our ability to run on newly introduced
systems. For these advantages, Kokkos is believed to play a
critical role in preparing Uintah for future HPC systems.

Uintah is an early adopter of Kokkos with Uintah developers
collaborating directly with Kokkos developers as a part of
the University of Utah’s participation in the DOE/NNSA’s
Predictive Science Academic Alliance Program (PSAAP) II
initiative. This collaboration has resulted in bi-directional
development efforts with developers working in each other’s
codebases. At Sandia National Laboratories, Kokkos has been

integrated in Trilinos [27] and used in codes such as Albany
[28], GenTen [29], HOMMEXX [30], LAMMPS [31], and
SPARTA [32]. Examples of other codes investigating and/or
adopting Kokkos include BabelStream [33], K-Athena [34],
KARFS [35], NekMesh [36], and TeaLeaf [37]. A list of
applications using Kokkos can be found on the Kokkos
GitHub [38].

IV. STATE OF UINTAH’S SUPPORT FOR KOKKOS

The non-trivial nature of Uintah’s adoption of Kokkos has
required a number of small-scale case studies and refactors [8],
[39]–[42]. These individual efforts validate the use of Kokkos:
(1) in simple representative settings outside of Uintah, (2) in
simple isolated portions of Uintah, (3) in complex isolated
portions of Uintah, (4) in complex far-reaching portions of
Uintah, and (5) at scale. This incremental approach has been
critical for ensuring continued feasibility and success of the
effort given the high levels of investment required of Uintah
when adopting a performance portability layer. Refactoring
the most complex code early on has been key to identifying
challenges quickly and refining best practices to simplify
refactors moving forward. Such an approach is important for
this and similar codebases where suitability must be evaluated
before far-reaching adoption and significant investment in a
performance portability layer.

To date, Uintah’s Kokkos-related activities include:
• Single-node case studies exploring use of Kokkos parallel

patterns with Kokkos::OpenMP in a simple standalone
example outside of Uintah’s simulation components [39]

• Single-node case studies exploring use of Kokkos
parallel patterns and unmanaged Kokkos views with
Kokkos::OpenMP and Kokkos::CUDA in a mock run-
time system representative of Uintah and the ARCHES
simulation component [40]

• Implementation of Uintah-specific abstractions to provide
portable interfaces to Kokkos parallel patterns and un-
managed Kokkos views

• Refactoring of a challenging standalone radiative heat
transfer calculation outside of Uintah’s simulation com-
ponents to support use of Kokkos::OpenMP [41]

• Multi-node case studies exploring use of
Kokkos::OpenMP at scale on the NSF Stampede 2
system using the refactored radiative heat transfer
calculation [41]

• Incremental refactoring of loops in ARCHES to support
use of Kokkos::OpenMP (ongoing)

• Implementation of a portable random number generator
adopting Kokkos Random functionality [42]

• Refactoring of the radiative heat transfer calculation to
additionally support use of Kokkos::CUDA [42]

• Extension of Kokkos itself to support asynchronous exe-
cution of Kokkos parallel patterns [42]

• Multi-node case studies exploring use of
Kokkos::OpenMP at scale on the DOE Theta system
and use of Kokkos::CUDA at scale on the DOE Titan



system using the refactored radiative heat transfer
calculation [42]

• Implementation of a new task scheduler adopting Kokkos
partitioning functionality to support use of nested
Kokkos::OpenMP [8]

• Implementation of portable synchronization primitives
based on Kokkos MasterLock functionality

• Implementation of a task tagging system to allow for se-
lective compilation of loops across Kokkos back-ends [8]

• Refactoring of a challenging combustion loop modeling
the char oxidation of coal particles in ARCHES to support
use of Kokkos::OpenMP and Kokkos::CUDA [8]

• Single-node case studies exploring use of nested
Kokkos::OpenMP and Kokkos::CUDA at the loop-level
using both the refactored radiative heat transfer calcula-
tion and refactored char oxidation model [8]

• Multi-node case studies exploring use of nested
Kokkos::OpenMP at scale on the NSF Stampede 2 system
using the refactored radiative heat transfer calculation [8]

• Incremental refactoring of loops in ARCHES to addition-
ally support use of Kokkos::CUDA (ongoing)

• Implementation of a new task scheduler to sup-
port simultaneous use of nested Kokkos::OpenMP and
Kokkos::CUDA (ongoing)

This progress has been achieved using the following Kokkos
functionality [43]:

• Kokkos::parallel for
• Kokkos::parallel reduce (min and sum reductions)
• Kokkos::View (unmanaged)
• Kokkos::OpenMP::partition master
• Kokkos::Experimental::MasterLock
• Kokkos Random

The indirect performance portability layer adoption approach
that has been informed by this progress is discussed in Sections
V through IX.

V. UINTAH’S INTERMEDIATE PORTABILITY LAYER

A fundamental abstraction shared among several perfor-
mance portability layers is the parallel loop statement. This
abstraction is key to providing access to multiple underlying
programming models through a single interface. Though exact
syntax and implementation details vary, parallel loop state-
ments generally rely upon an iteration range and a loop body
defined as a C++ lambda or functor. An example of simplified
syntax for Kokkos and RAJA parallel loop statements from
Figure 5 in a recent evaluation [44] is shown below:

// Kokkos
parallel_for( n, KOKKOS_LAMBDA( int i )
BODY
);

// RAJA
forall<thread_exec>( 0, n, [=]( Index_type i )
BODY
);

TABLE I
COMPONENTS OF UINTAH’S INTERMEDIATE PORTABILITY LAYER.

Level Component

Loopa Generic Loop Statements Mapped to Multiple Execution Schemes
Generic Data Structures Mapped to Multiple Data Structures

Applicationb Arbitrary Tags to Manage Interfaces to Programming Models
Arbitrary Execution Spaces to Manage Execution Schemes
Arbitrary Memory Spaces to Manage Data Structures
Portable Tools (e.g., Locks, Random Number Generators)

Buildc Preprocessor Macros to Manage Multiple Build Configurations
Build-Specific Tags to Manage Selective Compilation of Loops

adescribed further in Section VI.
bdescribed further in Section VII.
cdescribed further in Section VIII.

Note, more discussion on similarities and differences among
modern C++ parallel programming models, including Kokkos,
RAJA, and SYCL, can be found in a recent evaluation [44]
and comparative analysis [45].

For OpenMP and CUDA themselves, the parallel loop
statements and other abstractions offered by Kokkos have
worked well in Uintah for the advantages discussed in Section
III. The high levels of investment required of Uintah when
adopting Kokkos, however, has discouraged direct adoption of
these PPL-specific abstractions. Specifically, direct adoption of
Kokkos throughout Uintah has been avoided to: (1) allow for
legacy code to be preserved, (2) eliminate reliance on Kokkos
to provide support for new underlying programming models,
(3) simplify abstractions provided for application developers,
and (4) ease re-work should implementation changes or a
different performance portability layer be needed.

The approach taken to indirectly adopt Kokkos within Uin-
tah uses an intermediate portability layer to provide Uintah-
specific abstractions that interact with underlying program-
ming models through various interfaces (e.g., implementing
Kokkos-specific abstractions). These framework-specific in-
terfaces allow for pre-existing code to be preserved when
adopting Kokkos and, in theory, provide easy means of
adopting other programming models should Kokkos not yet
support one needed for a novel architecture. To date, Uin-
tah’s interfaces map Uintah-specific abstractions to: (1) legacy
code, (2) Kokkos-specific abstractions for Kokkos::OpenMP,
and (3) Kokkos-specific abstractions for Kokkos::CUDA.
Note, individual interfaces are used for Kokkos::OpenMP and
Kokkos::CUDA to ease selective compilation of loops and to
provide more control over the implementation and execution
of loops.

Table I shows the individual components that form Uintah’s
intermediate portability layer. Specifically, this intermediate
layer consists of three components: (1) loop-level support
providing application developers with framework-specific ab-
stractions (e.g., generic parallel loop statements) that map
to interface-specific abstractions (e.g., PPL-specific parallel
loop statements), (2) application-level support that includes a
tagging system to identify which interfaces are supported by a
given loop, and (3) build-level support that includes selective
compilation of loops to allow for incremental refactoring and
simultaneous use of multiple underlying programming models
for heterogeneous HPC systems.



An example of how these components are implemented is
the Uintah::parallel for shown below:

// Uintah
parallel_for( executionObject

, iterationRange
, LAMBDA( int i, int j, int k )

BODY
);

This is a framework-specific parallel loop statement modeled
after the approach used by performance portability layers.
Similar to performance portability layer goals, this abstraction
aims to provide application developers with a single loop
statement that allows for easy adoption of underlying pro-
gramming models without requiring knowledge of low-level
implementation details (e.g., for Kokkos). In practice, this
approach has worked well for application developers used to
writing serial loops in Uintah with little parallel programming
experience.

The Uintah::parallel for parameter list differs slightly
from previous examples in that it includes an additional
parameter and requires 3-dimensional indexing. The execu-
tionObject parameter is a templated object used to pass
non-portable objects and additional parameters (e.g., CUDA
streams, CUDA blocks per loop, template parameters used
to manage paths of execution, etc) into portable loops for
use behind-the-scenes in interfaces to underlying programming
models. Three-dimensional indexing is used to ease legacy
code support and is mapped to 1-dimensional indexing, as
needed, behind-the-scenes. This is managed with the help
of iterationRange, which is an object used to pass itera-
tion range indices into portable loops. Note, LAMBDA is
a generic macro for managing lambda capture clauses and
CUDA annotation (e.g., device ) in a manner similar to
that used by Kokkos and RAJA (e.g., KOKKOS LAMBDA,
RAJA DEVICE, RAJA HOST DEVICE).

Behind-the-scenes, preprocessor macros and template
metaprogramming are used to manage paths of execution
for Uintah’s interfaces to underlying programming models
in a single location. For example, a Uintah::parallel for is
executed using a Kokkos::parallel for optimized for CUDA
when Uintah is built with Kokkos::CUDA. This behind-the-
scenes management is key to easily adding, removing, and
tuning interfaces (e.g., to change how a Kokkos::parallel for
iterates over work items or, in theory, add support for another
performance portability layer’s parallel loop statement). De-
tails on Uintah’s intermediate portability layer, including code
examples, can be found in a recent technical report [8].

VI. LOOP-LEVEL DETAILS

A. Portable Code Inside of Portable Abstractions

A key benefit of performance portability layers is their
ability to execute a single implementation in many differ-
ent ways. This, however, is not guaranteed by adopting a
portable abstraction itself. This is complicated by underlying
programming models supporting code to different extents (e.g.,
convenience mechanisms). Understanding what can and cannot

be done in portable loops is helpful for ensuring successful
compilation and execution across multiple underlying pro-
gramming models. This is eased by keeping code in portable
loops as simple as possible.

Examples of changes needed in pre-existing loops to make
portable use of OpenMP and CUDA via Kokkos in Uintah
include: (1) eliminating use of C++ standard library classes
and functions that do not have CUDA equivalents and (2)
eliminating allocation of host memory in portable loops.

B. Implementation of Portable Loops

Portable loop abstractions bring with them implementation
challenges independent of whether they are adopted directly or
indirectly. This is a result of great flexibility in where and how
execution and memory is managed. This is complicated by pre-
existing serial loops where parallel execution and thread safety
need not be accounted for. Thinking through implementation
and execution of portable loops is important for improving
loop-level performance and scalability.

Implementation and execution details found helpful when
adopting Kokkos in Uintah include: (1) ensuring that portable
loops are written in a thread-safe manner, (2) ensuring that
portable loops are provided with enough work items to iterate
over in parallel (e.g., at least as many work items as there
are OpenMP threads), (3) using lambdas instead of functors
(e.g., to avoid duplication of long parameter lists), (4) con-
sidering how to structure portable loops (e.g., 1D, 3D, etc),
(5) considering how portable loops iterate over work items
(e.g., individually or in groups), (6) considering how portable
loops utilize underlying hardware (e.g., cores, caches, etc), (7)
exploring configurability of underlying programming models
(e.g., OpenMP loop scheduling parameters), (8) adding run-
time parameters to manage execution (e.g., OpenMP threads
per loop, CUDA blocks per loop, etc). For (1), tools such
as Archer [46], Intel Inspector, and ThreadSanitizer [47] are
helpful for identifying data races.

VII. APPLICATION-LEVEL DETAILS

A. Portable Code Outside of Portable Abstractions

A key benefit of performance portability layers is their
ability to reduce the amount of duplicated code in an applica-
tion. This, however, applies only to the portable abstractions
adopted. In practice, application code extends beyond portable
abstractions (e.g., in large legacy codebases). Looking for op-
portunities to apply portable techniques used by performance
portability layers elsewhere in application code is important
for improving long-term portability and code maintainability.

Examples encountered when adopting Kokkos in Uintah
include using behind-the-scenes preprocessor macros and tem-
plate metaprogramming to add portable support for: (1) arbi-
trary tags to manage interfaces to underlying programming
models (e.g., for selective compilation of loops), (2) arbitrary
execution spaces to manage loop execution schemes, (3)
arbitrary memory spaces to manage data structures, and (4)
an object to pass interface-specific needs into portable loops
(e.g., CUDA streams).



B. Portable Tools for Application Code
Commonly used tools (e.g., C++ standard library conve-

nience mechanisms) pose portability challenges when using
multiple underlying programming models. This is a result of
underlying programming models supporting such tools to dif-
ferent extents. This is complicated by pre-existing loops using
non-portable tools (e.g., in large legacy codebases). Thinking
through which portable tools to support before far-reaching
adoption of a performance portability layer is important for
avoiding unexpected refactors.

Portable tools found helpful when adopting Kokkos
in Uintah include portable: (1) vector containers,
(2) synchronization mechanisms, (3) random number
generation, and (4) mechanisms for simultaneously
executing portable loops. In Kokkos, portable options
for (1), (3), and (4) are provided via Kokkos::Vector,
Kokkos Random, and Kokkos::OpenMP::partition master,
respectively. For (2), a Uintah-specific abstraction based
on Kokkos::Experimental::MasterLock was implemented to
avoid mixing use of std::mutex and omp lock t. Details on
Uintah’s use of Kokkos::OpenMP::partition master can be
found in a recent technical report [8].

VIII. BUILD-LEVEL DETAILS

A. Support for Multiple Build Configurations
Adoption of multiple underlying programming models re-

quires careful consideration of new build configurations and
paths of execution. This is complicated by heterogeneous HPC
systems requiring simultaneous use of multiple underlying
programming models (e.g., OpenMP and CUDA) to fully
utilize a heterogeneous compute node. Thinking through how
to manage current and future build configurations before
far-reaching adoption of a performance portability layer is
important for avoiding unexpected refactors.

Recurring paths of execution encountered when adopting
Kokkos in Uintah include: (1) code needed for the underlying
programming model independent of the performance porta-
bility layer (e.g., OpenMP locks), (2) code needed for the
performance portability layer independent of the underlying
programming model(s) (e.g., Kokkos Views), and (3) code
needed for the performance portability layer dependent upon
the underlying programming model(s) (e.g., Uintah-specific
abstractions for Kokkos::OpenMP).

Consistent use of standardized preprocessor macros simpli-
fies management of such paths. An example of a macro defini-
tion for (1) is HAVE <BACK-END>, which is defined when
the application picks up the underlying programming model.
An example of a macro definition for (2) is HAVE <PPL>,
which is defined when the application picks up the per-
formance portability layer. An example of a macro defini-
tion for (3) is <APP> ENABLE <PPL> <BACK-END(S)>,
which is defined when both the application and the perfor-
mance portability layer pick up the underlying programming
model(s). Note, preprocessor macros helpful for identifying
when Kokkos itself picks up the underlying programming
model(s) can be found in kokkos/core/src/Kokkos Macros.hpp.

When using multiple underlying programming models, pre-
processor macro logic to support (3) becomes complicated
quickly. This posed unexpected challenges requiring addi-
tional refactors when adding support for Kokkos::OpenMP
and Kokkos::CUDA in the same Uintah build. Use of pre-
processor macros explicitly identifying code specific to such
builds (e.g., UINTAH ENABLE KOKKOS OPENMP CUDA)
is helpful for simplifying logic and readability. Note, heteroge-
neous builds can be simplified using the nvcc wrapper Linux
shell script found on the Kokkos GitHub [48].

B. Selective Compilation of Portable Loops

Use of portable abstractions across multiple loops poses
challenges when adding support for additional underlying
programming models. This is a result of every portable loop
having to properly support the newly adopted programming
model to avoid breaking builds. It is not feasible, however,
to refactor all loops at once (e.g., to remove non-portable
code) after portable abstractions have been widely adopted
throughout a codebase.

This challenge is addressed here using a tagging system
that allows application developers to individually identify the
supported interfaces for each individual loop. These tags are
used to ensure that loops are compiled for only the respective
underlying programming models that are supported to avoid
breaking builds. This allows for incremental refactoring on
a loop-by-loop basis when adding support for additional pro-
gramming models, eliminating the need to refactor all loops at
once. This approach also simplifies the isolation of problematic
code by allowing loops to be easily enabled/disabled across
programming models when debugging.

Such a tagging system has been implemented in Uintah
using preprocessor macros and template metaprogramming.
At compile-time, a portable loop is compiled for all interfaces
identified as being currently supported by application develop-
ers using macro-based tags (e.g., KOKKOS OPENMP TAG).
Behind-the-scenes, provided tags are mapped to their re-
spective underlying execution space and memory space (e.g.,
Kokkos::OpenMP and Kokkos::HostSpace). At run-time, the
portable loop is executed by one of the supported underly-
ing programming models based upon build-specific paths of
execution and Uintah-specific template parameters (e.g., Ex-
ecSpace and MemSpace). Uintah-specific template parameters
extend those used by Kokkos to allow for other non-Kokkos
execution spaces and memory spaces to be supported (e.g.,
Uintah::Legacy and Uintah::HostSpace to preserve legacy
code). This approach is used to improve long-term portability
of execution spaces and memory spaces for future interfaces
and underlying programming models.

IX. GENERAL DETAILS

A. Far-Reaching Test Coverage and Regular Testing

Far-reaching test coverage and regular testing of a codebase
is critical for easing adoption of a performance portability
layer. This is a result of it being inherently easy to introduce
unanticipated changes in portable code due to emphasis on



executing a single implementation in many different ways.
This is complicated by combinatorially increasing scenarios
to consider for newly introduced underlying programming
models, build configurations, and run configurations. Test
scenarios found helpful when adopting Kokkos in Uintah
include testing: (1) each underlying programming model, (2)
relevant combinations of underlying programming models,
(3) each build configuration, (4) serial execution of portable
loops, and (5) parallel execution of portable loops. Such
testing is especially important for codebases where multiple
tests execute different subsets of partially overlapping portable
loops, which makes it is easier to introduce unanticipated
changes.

B. Standardization of Adopted Portability Layers

Far-reaching adoption of a portability layer poses code
maintainability and debugging challenges. This is a result of
portable loops relying upon each other for successful compi-
lation and execution. Standardization of newly adopted porta-
bility layers eases these challenges by improving searchability
to simplify far-reaching changes (e.g., to add support for a
new interface) and debugging (e.g., to quickly identify all code
using a given interface). An example of standardization applied
to Uintah’s intermediate portability layer includes consistent
formatting, naming conventions, and whitespace.

C. Living Best Practices

Pre-existing loops pose refactoring challenges when incre-
mentally adopting a performance portability layer in a large
legacy codebase. This is a result of not knowing both what and
how much non-portable code is used in loops before adoption.
This is complicated by loops having different barriers to
portability. Maintaining a living document collecting best
practices and portability barriers from past refactors helps
simplify refactors moving forward.

D. Incremental Case Studies

Carefully selected case studies are helpful for evaluating a
performance portability layer before far-reaching adoption and
significant investment. Two types of case studies used to ease
adoption of Kokkos in Uintah include those examining: (1) the
most complex code and (2) simple representative code. Case
studies using (1) identified challenges quickly and informed
best practices. Examples of (1) include loops with complicated
nesting hierarchies, extensive use of C/C++ functionality,
complex data structures, etc. Case studies using (2) evaluated
representative performance of more typical portable loops and
refined best practices. Examples of (2) include loops with
recurring patterns throughout the codebase, simple math, etc.
Results from past Uintah case studies can be found in a recent
technical report [8] and other publications [39]–[42].

X. CHAR OXIDATION MODELING CASE STUDIES

Uintah’s char oxidation model is a large consumer of
simulation time among models evaluated during the time
integration of physics in ARCHES [21]. This complex loop

TABLE II
CHAROX:CPU INCREMENTAL REFACTOR ON INTEL SANDY BRIDGE.a

1 - 163 1 - 323 1- 643

Refactor Step* Patch Patch Patch

0: Original serial loop 17.87 (-) 141.8 (-) 1132 (-)
1: Serial Uintah::parallel for 19.19 (0.9x) 142.1 (1.0x) 1148 (1.0x)
2: No std::vector 11.74 (1.5x) 93.7 (1.5x) 753 (1.5x)
3: No temporary objects 10.96 (1.6x) 88.5 (1.6x) 710 (1.6x)
4: No virtual functions 9.75 (1.8x) 78.5 (1.8x) 634 (1.8x)
5: Portable data structures 10.18 (1.8x) 78.6 (1.8x) 633 (1.8x)
6: No std::string 9.16 (2.0x) 73.3 (1.9x) 591 (1.9x)
7: Improved memory access 6.73 (2.7x) 55.2 (2.6x) 444 (2.5x)
aper-loop timing reported in milliseconds (x speedup).
*refactor steps are cumulative.

has approximately 350 lines with multiple interior loops and
Newton iterations. This algorithm has a theoretical arithmetic
intensity of approximately 1.30 FLOPs per double precision
number. Details on this model can be found in a recent
technical report [8].

A. Single-Node Studies

The results presented in this section used two implemen-
tations of Uintah’s char oxidation model: (1) CharOx:CPU,
an existing implementation with serial loops and (2)
CharOx:Portable, a new portable implementation supporting
legacy serial loops and Kokkos-based data parallel loops for
Kokkos::OpenMP and Kokkos::CUDA.

SNB-based results were gathered on a node with two 2.7
GHz Intel Xeon E5-2680 Sandy Bridge processors with 8
cores (2 threads per core) per processor and 64 GB of RAM.
SKX-based results were gathered on a node with one 2.7 GHz
Intel Xeon Gold 6136 Skylake processor with 12 cores (2
threads per core) per processor and 256 GB of RAM. KNL-
based results were gathered on a node with one 1.3 GHz
Intel Xeon Phi 7210 Knights Landing processor configured
for Flat-Quadrant mode with 64 cores (4 threads per core)
and 96 GB of RAM. Maxwell-based results were gathered on
a Maxwell-based NVIDIA GeForce GTX Titan X GPU with
12 GB of RAM. Volta-based results were gathered on a Volta-
based NVIDIA Tesla V100 GPU with 16 GB of RAM.

Aside from Table II, simulations were launched using 1
MPI process per node with run configurations using the
full node. SNB-, SKX-, and KNL-based problems used 1
patch per core. Maxwell- and Volta-based problems used 16
patches. Note, a patch is the collection of cells executed by
a loop. Reported per-loop timings measure execution of the
Uintah::parallel for. Results have been averaged over 7 con-
secutive timesteps and 80-320 loops per timestep depending
upon patch count. Over 10 identical runs, results gathered in
this manner had at most 6.8% difference between two runs.

Table II shows incremental performance improvements
achieved on Intel Sandy Bridge when refactoring the char oxi-
dation model. These results were gathered using CharOx:CPU
for three patch sizes (163, 323, and 643 cells) at various steps
of the refactor. 16 MPI processes were used to simultaneously
execute loops across 16 cores using 1 core and 1 thread per
loop. Step 0 corresponds to serial execution of the original
serial loop. Step 1 corresponds to serial execution of the



TABLE III
CHAROX:PORTABLE THREAD SCALABILITY ON INTEL SANDY BRIDGE.a

Cores Threads 1 - 163 1 - 323 1- 643

per Loop per Loop Patch Patch Patch

1 2* 7.36 (0.9x) 50.38 (1.1x) 426.7 (1.1x)
1 1 6.90 (-) 55.88 (-) 469.2 (-)
2 2 4.38 (1.6x) 29.34 (1.9x) 239.8 (2.0x)
4 4 2.54 (2.7x) 15.13 (3.7x) 120.4 (3.9x)
8 8 1.54 (4.5x) 7.51 (7.4x) 60.3 (7.8x)

16** 16 0.48 (14.4x) 3.72 (15.0x) 30.6 (15.3x)
16** 32* 0.41 (16.8x) 3.24 (17.2x) 26.7 (17.6x)

aper-loop timing reported in milliseconds (x speedup).
*2 threads per core.
**2 sockets.

loop after refactoring to use Uintah’s abstraction providing
interfaces to legacy code and Kokkos::parallel for. Step 2
corresponds to replacing use of std::vector inside of the loop
with 1-dimensional arrays of doubles. Step 3 corresponds to
replacing temporary object construction inside of the loop
with 2-dimensional arrays of doubles. Step 4 corresponds
to hard-coding short virtual functions inside of the loop.
Step 5 corresponds to refactoring data warehouse variables
to use Uintah’s abstraction providing interfaces to legacy data
structures and unmanaged Kokkos Views. Step 6 corresponds
to replacing std::string comparisons inside of the loop with
integer-based comparisons. Step 7 corresponds to restructuring
the loop to improve data warehouse variable access patterns
(e.g., algorithm transformations to avoid conditionals that
operate on different variables). Note, Step 1 and Step 5 are
not expected to impact performance as abstractions execute
the underlying legacy code in the same manner as in Step 0.
Refactoring for portability allowed for speedups up to 2.7x,
2.6x, and 2.5x to be achieved for 163, 323, and 643 cells,
respectively, over the original serial loop.

Table III shows Kokkos::OpenMP-based thread scalabil-
ity on Intel Sandy Bridge for char oxidation modeling.
These results were gathered using CharOx:Portable with
Kokkos::OpenMP for three patch sizes (163, 323, and 643

cells). For 1 thread per core runs, 1 MPI process and 16
OpenMP threads were used to simultaneously execute loops
across 16 cores using from 1 core and 1 thread per loop to
16 cores and 16 threads per loop. For 2 threads per core
runs, 1 MPI process and 32 OpenMP threads were used to
simultaneously execute loops across 16 cores using both 1
core and 2 threads per loop and 16 cores and 32 threads per
loop. Adding loop-level parallelism via more threads allowed
for speedups up to 16.8x, 17.2x, and 17.6x to be achieved for
163, 323, and 643 cells, respectively, when using 16 cores with
2 threads per core over use of 1 core and 1 thread per loop.

Table IV shows Kokkos::OpenMP-based thread scalability
on Intel Skylake for char oxidation modeling. These results
were gathered using CharOx:Portable with Kokkos::OpenMP
for three patch sizes (163, 323, and 643 cells). For 1 thread
per core runs, 1 MPI process and 12 OpenMP threads were
used to simultaneously execute loops across 12 cores using
from 1 core and 1 thread per loop to 12 cores and 12 threads
per loop. For 2 threads per core runs, 1 MPI process and 24
OpenMP threads were used to simultaneously execute loops

TABLE IV
CHAROX:PORTABLE THREAD SCALABILITY ON INTEL SKYLAKE.a

Cores Threads 1 - 163 1 - 323 1- 643

per Loop per Loop Patch Patch Patch

1 2* 3.32 (0.8x) 22.78 (1.1x) 164.0 (1.2x)
1 1 2.81 (-) 25.60 (-) 196.9 (-)
2 2 2.03 (1.4x) 15.06 (1.7x) 103.8 (1.9x)
3 3 1.40 (2.0x) 10.13 (2.5x) 74.1 (2.7x)
4 4 1.01 (2.8x) 7.77 (3.3x) 54.9 (3.6x)
6 6 0.74 (3.8x) 5.20 (4.9x) 37.5 (5.3x)
12 12 0.29 (9.7x) 2.24 (11.4x) 18.6 (10.6x)
12 24* 0.22 (12.8x) 1.72 (14.9x) 14.1 (14.0x)

aper-loop timing reported in milliseconds (x speedup).
*2 threads per core.

TABLE V
CHAROX:PORTABLE THREAD SCALABILITY ON INTEL KNIGHTS

LANDING.a

Cores Threads 1 - 163 1 - 323 1- 643

per Loop per Loop Patch Patch Patch

1 4** 23.44 (1.2x) 150.83 (1.4x) 1232.8 (1.5x)
1 2* 23.48 (1.2x) 160.96 (1.3x) 1343.6 (1.3x)
1 1 27.36 (-) 216.79 (-) 1812.6 (-)
2 2 18.02 (1.5x) 114.52 (1.9x) 903.2 (2.0x)
4 4 9.55 (2.9x) 59.26 (3.7x) 459.4 (3.9x)
8 8 4.84 (5.7x) 31.18 (7.0x) 232.4 (7.8x)

16 16 2.62 (10.4x) 17.76 (12.2x) 122.8 (14.8x)
32 32 1.64 (16.7x) 10.55 (20.5x) 63.0 (28.8x)
64 64 0.63 (43.4x) 4.63 (46.8x) 30.8 (58.9x)
64 128* 0.59 (46.4x) 3.31 (65.5x) 23.6 (76.8x)
64 256** 1.59 (17.2x) 5.08 (42.7x) 27.2 (66.6x)

aper-loop timing reported in milliseconds (x speedup).
*2 threads per core.
**4 threads per core.

across 12 cores using both 1 core and 2 threads per loop and 12
cores and 24 threads per loop. Adding loop-level parallelism
via more threads allowed for speedups up to 12.8x, 14.9x, and
14.0x to be achieved for 163, 323, and 643 cells, respectively,
when using 12 cores with 2 threads per core over use of 1
core and 1 thread per loop.

Table V shows Kokkos::OpenMP-based thread scalabil-
ity on Intel Knights Landing for char oxidation modeling.
These results were gathered using CharOx:Portable with
Kokkos::OpenMP for three patch sizes (163, 323, and 643

cells). For 1 thread per core runs, 1 MPI process and 64
OpenMP threads were used to simultaneously execute loops
across 64 cores using from 1 core and 1 thread per loop to
64 cores and 64 threads per loop. For 2 threads per core
runs, 1 MPI process and 128 OpenMP threads were used to
simultaneously execute loops across 64 cores using both 1 core
and 2 threads per loop and 64 cores and 128 threads per loop.
For 4 threads per core runs, 1 MPI process and 256 OpenMP
threads were used to simultaneously execute loops across 64
cores using both 1 core and 4 threads per loop and 64 cores
and 256 threads per loop. Adding loop-level parallelism via
more threads allowed for speedups up to 46.4x, 65.5x, and
76.8x to be achieved for 163, 323, and 643 cells, respectively,
when using 64 cores with 2 threads per core over use of 1
core and 1 thread per loop.

Table VI shows Kokkos::CUDA-based block scalability
using 256 CUDA threads per block on NVIDIA Maxwell for
char oxidation modeling. These results were gathered using
CharOx:Portable with Kokkos::CUDA for three patch sizes
(163, 323, and 643 cells). 1 MPI process and 16 threads were



TABLE VI
CHAROX:PORTABLE BLOCK SCALABILITY ON NVIDIA MAXWELL.a

CUDA Blocks 1 - 163 1 - 323 1- 643

per Loop* Patch Patch Patch

1 2.80 (-) 18.57 (-) 147.6 (-)
2 1.47 (1.9x) 9.59 (1.9x) 77.6 (1.9x)
4 0.80 (3.5x) 5.50 (3.4x) 44.0 (3.4x)
8 0.48 (5.8x) 3.17 (5.9x) 25.6 (5.8x)
16 0.36 (7.8x) 2.29 (8.1x) 19.0 (7.8x)
24 0.28 (10.0x) 1.92 (9.7x) 13.9 (10.6x)

aper-loop timing reported in milliseconds (x speedup).
*256 CUDA threads per block.

TABLE VII
CHAROX:PORTABLE BLOCK SCALABILITY ON NVIDIA VOLTA.a

CUDA Blocks 1 - 163 1 - 323 1- 643

per Loop* Patch Patch Patch

1 0.66 (-) 4.65 (-) 36.49 (-)
2 0.36 (1.8x) 2.74 (1.7x) 19.43 (1.9x)
4 0.21 (3.1x) 1.48 (3.1x) 10.63 (3.4x)
8 0.13 (5.1x) 0.88 (5.3x) 6.82 (5.4x)
16 0.09 (7.3x) 0.55 (8.5x) 4.46 (8.2x)
32 0.09 (7.3x) 0.41 (11.3x) 3.17 (11.5x)
64 0.09 (7.3x) 0.33 (14.1x) 2.67 (13.7x)
80 0.09 (7.3x) 0.33 (14.1x) 2.52 (14.5x)

aper-loop timing reported in milliseconds (x speedup).
*256 CUDA threads per block.

used to simultaneously execute loops using 1 CUDA stream
and from 1 to 24 CUDA block(s) per loop with 256 CUDA
threads per block and 255 registers per thread. Adding loop-
level parallelism via more blocks allowed for speedups up to
10.0x, 9.7x, and 10.6x to be achieved for 163, 323, and 643

cells, respectively, when using 24 blocks per loop over use of
1 block per loop and 256 threads per block.

Table VII shows Kokkos::CUDA-based block scalability
using 256 CUDA threads per block on NVIDIA Volta for
char oxidation modeling. These results were gathered using
CharOx:Portable with Kokkos::CUDA for three patch sizes
(163, 323, and 643 cells). 1 MPI process and 16 threads were
used to simultaneously execute loops using 1 CUDA stream
and from 1 to 80 CUDA block(s) per loop with 256 CUDA
threads per block and 255 registers per thread. Adding loop-
level parallelism via more blocks allowed for speedups up to
7.3x, 14.1x, and 14.5x to be achieved for 163, 323, and 643

cells, respectively, when using 80 blocks per loop over use of
1 block per loop and 256 threads per block.

Results presented in Table II show that performance is a
by-product of refactoring for portability. Comparing 1 core per
loop, 1 thread per loop results in Table III to Step 7 results in
Table II suggests that little to no performance has been lost
when moving to CharOx:Portable. This is encouraging as this
single implementation of CharOx now supports execution with
Kokkos::OpenMP and Kokkos::CUDA in addition to legacy
execution.

Results presented in Tables III through IV show that
it is possible to achieve good loop-level scalability across
multicore-based nodes. Results presented in Tables V through
VII show that it can be difficult to achieve good loop-level
scalability across many-core- and GPU-based nodes. This is
not unexpected given the increasing amounts of parallelism
offered by such nodes. As will be shown in Section XI,
executing more, yet smaller, loops at the same time (e.g., using

hierarchical parallelism) can be used to improve node utiliza-
tion for loops that scale poorly. Looking more closely at Tables
III through V, these results suggest that care must be taken
when using multiple threads per core on multicore- and many-
core-based nodes. Though modest performance improvements
are achievable, performance reductions are also possible when
using multiple threads per core with insufficient per-core work.

XI. RADIATION MODELING CASE STUDIES

Uintah’s 2-level reverse Monte-Carlo ray tracing (RMCRT)
radiation model plays a key role in CCMSC boiler simulations,
where radiation is the dominant mode of heat transfer. This
complex loop has approximately 500 lines with multiple
interior loops and far-reaching irregular memory access pat-
terns. This algorithm has a theoretical arithmetic intensity
of approximately 0.66 FLOPs per double precision number.
Details on this model can be found in a recent technical
report [8].

A. Single-Node Studies

The results presented in this section used three implemen-
tations of Uintah’s 2-Level RMCRT radiation model: (1) 2-
Level RMCRT:CPU, an existing implementation with serial
loops, (2) 2-Level RMCRT:GPU, an existing implementa-
tion with CUDA-based data parallel loops, and (3) 2-Level
RMCRT:Portable, a new portable implementation supporting
legacy serial loops and Kokkos-based data parallel loops for
Kokkos::OpenMP and Kokkos::CUDA.

Aside from patch count, results were gathered on the same
nodes as described in Section X-A and using 1 MPI process
per node with run configurations using the full node. Here,
patch counts were based on quantities constructing a 1283

fine mesh. Reported per-timestep timings measure execution of
the timestep and, thus, simultaneous execution of all loops in a
given timestep. Results have been averaged over 7 consecutive
timesteps. Over 10 identical runs, results gathered in this
manner had at most 3.0% difference between two runs.

Table VIII shows performance comparisons across Intel
Sandy Bridge, Intel Skylake, Intel Knights Landing, and
NVIDIA Maxwell for radiation modeling. These results
were gathered using 2-Level RMCRT:CPU, 2-Level RM-
CRT:Portable with Kokkos::OpenMP, 2-Level RMCRT:GPU,
and 2-Level RMCRT:Portable with Kokkos:CUDA for a prob-
lem with 1283 cells on the fine mesh and 323 cells on
the coarse mesh for three fine mesh configurations (512,
64, and 8 patches with 163, 323, and 643 cells per patch,
respectively). For each architecture, all supported run config-
urations were explored (e.g., from 1 to many loops executing
at the same time with many to 1 threads per loop). For
SNB, best run configurations for 2-Level RMCRT:Portable
allowed for speedups up to 1.5x and 1.7x to be achieved for
163 and 323 patches, respectively, over previously supported
best run configurations for 2-Level RMCRT:CPU. For SKX,
best run configurations for 2-Level RMCRT:Portable allowed
for speedups up to 1.4x and 1.7x to be achieved for 163

and 323 patches, respectively, over previously supported best



TABLE VIII
2-LEVEL RMCRT FULL-NODE PERFORMANCE COMPARISONS.a

2-Level RMCRT 512 - 163 64 - 323 8 - 643

Architectureb Implementation Patches Patches Patches

Dual SNB CPU 51.6* (-) 71.7 (-) -c (-)
Same Config. Portable 36.3* (1.4x) 55.5 (1.3x) -c (-)
Best Config. Portable 35.0* (1.5x) 42.0* (1.7x) 60.5* (-)
SKX CPU 40.2* (-) 61.9 (-) -c (-)
Same Config. Portable 32.4* (1.2x) 46.9 (1.3x) -c (-)
Best Config. Portable 28.0* (1.4x) 37.0* (1.7x) 59.7* (-)
KNL CPU 57.9** (-) 102.1 (-) -c (-)
Same Config. Portable 43.8** (1.3x) 81.0 (1.3x) -c (-)
Best Config. Portable 29.2** (2.0x) 38.8** (2.6x) 60.4** (-)
Maxwell GPU 32.1 (-) 46.6 (-) -c (-)
Same Config. Portable 25.9 (1.2x) 36.7 (1.3x) -c (-)
Best Config. Portable 20.0 (1.6x) 25.6 (1.8x) 43.6 (-)
aper-timestep timing reported in milliseconds (x speedup).
bsame configuration as the best non-Kokkos; best configuration using Kokkos.
cimpractical full-node patch count.
*2 threads per core.
**4 threads per core.

run configurations for 2-Level RMCRT:CPU. For KNL, best
run configurations for 2-Level RMCRT:Portable allowed for
speedups up to 2.0x and 2.6x to be achieved for 163 and
323 patches, respectively, over previously supported best run
configurations for 2-Level RMCRT:CPU. For Maxwell, best
run configurations for 2-Level RMCRT:Portable allowed for
speedups up to 1.6x and 1.8x to be achieved for 163 and
323 patches, respectively, over previously supported best run
configurations for 2-Level RMCRT:GPU.

These results suggest that performance is a by-product of
refactoring for portability. This is encouraging as this single
implementation of 2-Level RMCRT now supports execution
with Kokkos::OpenMP and Kokkos::CUDA in addition to
legacy execution. Best run configurations differing from pre-
viously supported best run configurations suggest that node
utilization has been improved. This is attributed to new flex-
ibility in run configuration that allows for cooperative use of
compute resources (e.g., cores, caches, etc) and optimization
of the balance between the number of loops executing at the
same time and the number of resources available to each loop.

B. Strong-Scaling Studies

While single-node studies help understand how to efficiently
use a node, it is also important to ensure that results apply
at scale. To demonstrate MPI+Kokkos scalability, multi-node
studies were performed on the Knights Landing portion of the
NSF Stampede 2 system. This portion of Stampede 2 features
the Intel Xeon Phi 7250 Knights Landing processor and offers
a variety of memory and cluster mode configurations. These
studies explored varying numbers and sizes of loops executing
at the same time across nodes configured for Cache-Quadrant
mode with a problem that fit in the 16 GB memory footprint
of MCDRAM.

Figure 2 shows strong-scaling across Intel Knights Landing
nodes for radiation modeling. These results were gathered
using 2-Level RMCRT:Portable with Kokkos::OpenMP for a
problem featuring 7683 cells on the fine mesh (decomposed
in 163 cells per patch) and 1923 cells on the coarse mesh for
three run configurations (1, 4, and 32 loop(s) executing at the
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Fig. 2. 2-Level RMCRT:Portable strong-scaling to 1,728 KNL nodes.

same time with 256, 64, and 8 threads per loop, respectively,
via 1 MPI process and 256 OpenMP threads).

These results show that as more, yet smaller, loops are
executed at the same time, node-level performance increases
at the expense of reductions in strong-scaling efficiency. This
is attributed to thread scalability in individual loops. For 163

patches, compute resources are used more efficiently when
individual loops use fewer threads, resulting in faster execution
of loops as a whole. This leads to quicker breakdown of
scalability as computation no longer hides communication
sooner. Executing more, yet smaller, loops at the same time
has allowed for speedups up to 1.6x and 1.4x to be achieved
at 27 and 1,728 nodes, respectively, over execution of 1 loop
at a time with 256 threads per loop.

Further, these results show that it is possible to achieve
good strong-scaling to 442,368 threads across 1,728 Knights
Landing processors using MPI+Kokkos. This is encouraging
as it suggests a potential for reducing the number of per-node
MPI processes by a factor of up to the number of cores/threads
per node in comparison to an MPI-only approach. This is
advantageous for many-core systems where the number of
MPI processes required to utilize increasingly larger per-node
core/thread counts becomes intractable.

XII. FORESEEABLE CHALLENGES

The approach presented here is a starting point for easing
adoption of a performance portability layer in large legacy
codebases. Foreseeable challenges include understanding how
to: (1) use third party libraries using a performance portability
layer in a codebase using a performance portability layer (e.g.,
using hypre in Uintah while using Kokkos in both hypre and
Uintah), (2) manage increasing configurability (e.g., multiple
tuneable run-time parameters across host and device), (3) make
informed use of underlying programming models (e.g., using
the device only when advantageous for a given loop), and
(4) efficiently manage parallel execution and memory across
multiple underlying programming models.

XIII. CONCLUSIONS AND FUTURE WORK

This work has helped improve Uintah’s portability to current
and future architectures and programming models while also



preserving support for pre-existing code. Specifically, it has
shown an approach for indirectly adopting a performance
portability layer to help improve legacy code support and
long-term portability in a large legacy codebase. Kokkos
capabilities have been shown when using this approach to
make portable use of Kokkos::OpenMP and Kokkos::CUDA
across multicore-, many-core-, and GPU-based nodes using
a single implementation for the case studies examined. At
the node-level, performance improvements up to 2.7x when
refactoring for portability and 2.6x when more efficiently using
a node have been achieved. At scale, good strong-scaling to
442,368 threads across 1,728 Knights Landing processors has
been achieved using MPI+Kokkos.

These advancements have been made possible by the in-
troduction of a framework-specific portability layer between
Uintah’s application code and Kokkos. This intermediate layer
consists of three components: (1) loop-level support providing
application developers with framework-specific abstractions
(e.g., generic parallel loop statements) that map to interface-
specific abstractions (e.g., PPL-specific parallel loop state-
ments), (2) application-level support that includes a tagging
system to identify which interfaces are supported by a given
loop, and (3) build-level support that includes selective com-
pilation of loops to allow for incremental refactoring and
simultaneous use of multiple underlying programming models
for heterogeneous HPC systems. This layer provides applica-
tion developers with easy to use portable abstractions while
allowing maintaining developers to easily add, remove, and
tune interfaces to underlying programming models in a single
location with fewer far-reaching changes across application
code.

The portability and performance improvements shown
here offer encouragement as we extend more of Uintah
to heterogeneous HPC systems using Kokkos::OpenMP and
Kokkos::CUDA. Next steps include furthering our understand-
ing of Kokkos use across host and device simultaneously
on heterogeneous IBM- and NVIDIA-based systems with
multiple sockets and devices per node. As a part of this,
emphasis will again be placed on long-term portability and
managing simultaneous use of host and device in a portable
manner with upcoming systems such as the Intel-based DOE
Aurora and AMD-based DOE Frontier in mind.
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APPENDIX A
ARTIFACT DESCRIPTION APPENDIX: A

FRAMEWORK-SPECIFIC APPROACH FOR PERFORMANCE
PORTABILITY LAYER ADOPTION IN LARGE LEGACY

CODES

A. Abstract
This description contains information describing how to

download, install, and run Uintah for the case studies in
Section X and Section XI. This information includes example
build scripts and run scripts.

B. Description
1) Check-list (artifact meta information):
• Algorithm: Char Oxidation, Reverse Monte-Carlo Ray Tracing

Radiation.
• Program: Uintah.
• Compilation: C++11 compliant compiler.
• Binary: sus.
• Data set: Uintah-provided benchmark.
• Hardware: See Sections X-A and XI-B.
• Output: Script-generated output.
• Experiment workflow: See below.
• Experiment customization: See below.
• Publicly available?: Yes.

2) How software can be obtained: Uintah’s latest support
for Kokkos can be checked out using:
svn co https://gforge.sci.utah.edu/svn/uintah/branches/kokkos_dev
username: anonymous
password: anonymous

Source for this paper can be checked out using:
svn co https://gforge.sci.utah.edu/svn/uintah/branches/sc19
username: anonymous
password: anonymous

Source for Steps 0 through 6 in Table II can be found in:
/sc19/src-char-ox-step-0-6

Files to reproduce Steps 0 through 6 in Table II can be found
in:
/sc19/src-char-ox-step-0-6/CCA/Components/Arches/ParticleModels/

Source for Tables III through VII and Step 7 in Table II can
be found in:
/sc19/src-char-ox

Source for Table VIII and Figure 2 can be found in:
/sc19/src-rmcrt

Modified source for Kokkos can be obtained using the below:
git clone https://github.com/kokkos/kokkos.git src
cd src
git checkout 2.7.00
git apply /sc19/build-scripts/kokkos_brad_oct122018.patch

3) Hardware dependencies: Uintah runs on Linux-based
platforms supporting recent C++11 compliant compilers.

4) Software dependencies: Uintah require use of a re-
cent C++11 compliant compiler (e.g., ICC 18.0.1 and GCC
7.3.1 used for most results here). Uintah builds using
Kokkos::CUDA require use of the Kokkos patch applied in
Section A-B2 to add support for asynchronous execution
of Kokkos parallel patterns. A list of general third party
dependencies can be found in:
/sc19/doc/InstallationGuide/

5) Datasets: Inputs for Steps 0 through 6 in Table II
include:
/sc19/tmp/char-ox-step-0-6-0016-16.ups
/sc19/tmp/char-ox-step-0-6-0016-32.ups
/sc19/tmp/char-ox-step-0-6-0016-64.ups

Inputs for Tables III through VII and Step 7 in Table II include:
/sc19/tmp/char-ox-0012-16.ups
/sc19/tmp/char-ox-0012-32.ups
/sc19/tmp/char-ox-0012-64.ups
/sc19/tmp/char-ox-0016-16.ups
/sc19/tmp/char-ox-0016-32.ups
/sc19/tmp/char-ox-0016-64.ups
/sc19/tmp/char-ox-0064-16.ups
/sc19/tmp/char-ox-0064-32.ups
/sc19/tmp/char-ox-0064-64.ups

Inputs for Table VIII include:
/sc19/tmp/rmcrt-128-16.ups
/sc19/tmp/rmcrt-128-32.ups
/sc19/tmp/rmcrt-128-64.ups

Inputs for Figure 2 include:
/sc19/tmp/rmcrt-stampede-2.ups

C. Installation

Example scripts for building Uintah can be found in:
/sc19/build-scripts/

General Uintah installation instructions including third party
library installation can be found in:
/sc19/doc/InstallationGuide/

General instructions for using Uintah on major HPC systems
can be found at:
http://uintah-build.sci.utah.edu/trac/wiki/MachineSpecificInfo

D. Experiment workflow

Below is an example command for running sus:
mpirun -np <#_of_processes> ./sus <run_configuration_parameters> <input.ups> | tee out.txt

Run configuration parameters are discussed in Section A-F.

Example scripts for generating results in Section X and XI
can be found in:
/sc19/tmp/

After running sus, output saved to text files can be parsed to
compute per-loop and per-timestep timings using:
/sc19/tmp/extractScalingData

Below is an example of using extractScalingData:
$ mpirun -np 1 ./sus -npartitions 16 -nthreadsperpartition 1 input-1.ups | tee out-1.txt
$ mpirun -np 1 ./sus -npartitions 16 -nthreadsperpartition 2 input-2.ups | tee out-2.txt
...
$ ./extractScalingData.sh out-1.txt out-2.txt ...

E. Evaluation and expected result

Running extractScalingData saves output to avgComponent-
Times and scalingData. Per-loop timings in Tables II through
V correspond to avgLoop timings reported in avgComponent-
Times as milliseconds. Per-loop timings in Tables VI and VII
correspond to average kernel times reported by nvprof. Per-
timestep timings in Table VIII and Figure 2 correspond to
avgMean timings reported in scalingData as seconds.



F. Experiment customization

Results in Sections X and XI experiment with varying amounts
of per-loop work and different run configurations.

Per-loop work is managed by the resolution and patches fields
in the Level block of an input file.

Below is an example of constructing a 643 domain subdivided
into 64 patches with 163 cells each:
<resolution>[64,64,64]</resolution>
<patches>[4,4,4]</patches>

Run configuration is managed by run-time parameters speci-
fied between the executable and input file, e.g.,:
mpirun -np <#_of_processes> ./sus <run_configuration_parameters> <input.ups> | tee out.txt

Uintah’s latest parameters can be listed using the below:
./sus --help

Parameters for non-Kokkos builds include:
-nthreads <#> : Number of threads per MPI process

Parameters for Kokkos::OpenMP builds include:
-npartitions <#> : Number of loops executing at the same time
-nthreadsperpartition <#> : Number of threads per loop

Parameters for Kokkos::CUDA builds include:
-nthreads <#> : Number of threads per MPI process
-cuda_threads_per_sm <#> : Number of threads per streaming multiprocessor (SM)
-cuda_sms_per_loop <#> : Number of streaming multiprocessors (SMs) per loop
-cuda_streams_per_task <#> : Number of CUDA streams per task

Per-loop work and run configuration can be verified in the
topmost output generated by sus, e.g.,:
$ Parallel: 1 MPI process
$ Parallel: 64 OMP thread partitions per MPI process
$ Parallel: 1 OMP thread per partition
...
$ Patch layout: (4,4,4)
$ Grid statistics:
$ Number of levels: 1
$ Level 0:
$ Periodic boundaries: [int 1, 1, 1]
$ Number of patches: 64
$ Total number of cells: 262144 (4096 avg. per patch)
$ Total patches in grid: 64
$ Total cells in grid: 262144 (4096 avg. per patch)

G. Notes

Uintah is in the process of moving to GitHub. An equivalently
name branch will be maintained there.
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