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Abstract—One of the major differences in many-core versus
multicore architectures is the presence of two different memory
spaces: a host space and a device space. In the case of NVIDIA
GPUs, the device is supplied with data from the host via one
of the multiple memory management API calls provided by
the CUDA framework, such as CudaMallocManaged and Cud-
aMemCpy. Modern systems, such as the Summit supercomputer,
have the capability to avoid the use of CUDA calls for memory
management and access the same data on GPU and CPU. This
is done via the Address Translation Services (ATS) technology
that gives a unified virtual address space for data allocated with
malloc and new if there is an NVLink connection between the
two memory spaces. In this paper, we perform a deep analysis of
the performance achieved when using two types of unified virtual
memory addressing: UVM and managed memory.

Index Terms—GPU, CUDA, managed memory, Unified Virtual
Memory (UVM).

I. INTRODUCTION

Unlike multicore architectures, accelerator architectures,
such as NVIDIA GPUs, have two distinct memory spaces:
one on the CPU and one on the GPU. For a kernel to run on
a GPU, data needs to be transferred from CPU to GPU either
via an explicit memory transfer made by the programmer or
by making the data accessible to both memory spaces via a
Unified Virtual Memory system. If the data is transferred by
the explicit memory transfer calls provided in the CUDA API
[2], such as cudaMalloc and cudaMemcpy, the data accessed
by the GPU travels through the various memory hierarchies
in the GPU memory space. These CUDA API calls are in
addition to the regular host memory allocation, which adds an
additional level of complexity to proper data management.

CUDA also has support for managed memory allocation
which allows the user to access the same memory across both
the memory spaces without the need for an explicit memory
transfer. Data transfer is done by the Memory Management
Unit at the granularity of a page. In order to use this feature
the memory allocation has to be done via the CUDA API
call cudaMallocManaged. This feature has been available in
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CUDA since version 6.0. For convenience, this paper will refer
to this methodology as managed memory.

CUDA 9.2 further introduced support for Address Transla-
tion Services (ATS) [3] [4] for power platforms. This tech-
nology allows GPUs to access CPUs page tables directly.
This functionality is supported on Volta GPUs by utilizing the
NVLink connections. ATS allows GPUs to access memory
allocated on the CPUs via the page tables. A miss in the
GPU Memory Management Unit (MMU) will result in an
Address Translation Request to the CPU. The CPU looks in
its page tables for the virtual-to-physical mapping for that
address and supplies the translation back to the GPU. ATS
provides the GPU complete access to CPU memory, including
memory allocated with the standard host-side functions malloc
and new [3]. This functionality means that on such systems,
a programmer does not need to use CUDA API calls to
handle memory management between the device and host
memory spaces. For convenience, this paper will refer to
this methodology as Unified Virtual Memory (UVM). A brief
introduction to the usage of UVM on Summit is shown here
[7].

One important difference between managed memory and
UVM is the granularity at which the data is brought into the
GPU memory hierarchies. In the case of managed memory, a
memory miss leads to the memory page with the requested
data being copied between memory spaces, whereas UVM
copies the data from host to device on the granularity of
a cache line. UVM is cache coherent and hence would
immediately update the CPU memory with the values updated
on the GPU side. UVM can adjust the granularity of the
data movement with the use of hints from the user such as
memory prefetching. This requires the use of a CUDA API
call, cudaMemPrefetchAsync.

Managed memory also allows the programmer to provide
memory prefetch hints. But managed memory would transfer
the data back to the host only when there is a request for the
data on the CPU.

The goal of the paper is to evaluate the differences in
performances of CPU and GPU kernels when UVM memory



management is used compared to managed-memory imple-
mented through the CUDA API. In order to evaluate these
differences, we have designed a synthetic benchmark that
allows us to parameterize the accesses on GPUs and CPUs.
This benchmark is used to evaluate the performance of both the
memory management systems with and without prefetching.

The rest of the paper is organized as follows: Section
II will describe the DAXPY kernel that we have used for
our benchmark and explore the possible access patterns on
the GPU that might effect the performance of kernels on
the GPU. In section III, we show the performance of UVM
versus managed memory, and present the scenarios when
one is better than the other. Our results also present the
performance differences between managed and UVM, when
both the memory managements have been provided with cu-
daMemPrefetchAsync hints. Finally in section IV, we present
our analysis and suggestions on when to use one memory
allocation technique over another.

II. DAXPY KERNEL

For this benchmark we use a daxpy kernel which is repre-
sented in the equation below :

y = y + a ∗ x (1)

In equation 1, y and x are two-dimenional vectors of type
double and their dimensions are N and M respectively. This
can be represented by the DAXPY kernel shown in Listing 1.

Listing 1: DAXPY kernel
//In .cu file, the daxpy kernel as distributed among the

threadblocks and threads of a GPU.
__global__ daxpy_kernel (double *x, double *y)
{
int i = 0, j = 0;
for(i=0; i<N; i++)
for(j=0.x; j<M; j++)
y(i,j) += a*x(i,j);

}

Listing 1 shows the sequential implementation of our DAXPY
kernel. The first loop iterates over the N rows of x and y vectors
whereas the second loop iterates over the M columns within
each row.

Listing 2: DAXPY kernel
//In .cu file, the daxpy kernel as distributed among the

threadblocks and threads of a GPU.
__global__ daxpy_kernel (double *x, double *y)
{
int i = 0, j = 0;
for(i=blockIdx.x; i<N; i+=gridDim.x)
for(j=threadIdx.x; j<M; j+=blockDim.x)
y(i,j) += a*x(i,j);

}

In this study, the kernel is built to distribute the N dimension
across the thread-blocks and the M across threads with each
thread-block as shown in Listing 2. Listing 3 shows the
memory setup for the benchmark.

Listing 3: Setup the memory
//The actual benchmark
void benchmark(double *x, double *y)
{

//If using managed memory allocate x and y vectors with
cudaMallocManaged

#if managed_memory
cudaMallocManaged(x,N*M*sizeof(double));
cudaMallocManaged(y,N*M*sizeof(double));

//Else if using UVM allocate memory using malloc
#elif defined(UVM)

x = malloc(N*M*sizeof(double))
y = malloc(N*M*sizeof(double))

#endif
... // Continued in Listing 3

The x and y vectors in benchmark are stored as N*M sized
double-type arrays. They are allocated by calling cudaMal-
locManaged when testing managed memory or malloc when
testing UVM. The data is then initialized to a starting value
and the kernel is launched as shown in Listing 4.

Listing 4: Launching DAXPY
... // Continued from Listing 2
//outer - represents number of times the loop of GPU-CPU is

iterated over
//inner - represents the number of times the given GPU

kernel is launched
dim3 grid(N,1,1);
dim3 threads(32,1,1);
for(outer){
for(inner){
daxpy_kernel<<<grid,threads>>>(x,y);
} //end inner
TouchOnCPU(y);

} //end outer
} \\ End of function benchmark

The DAXPY kernel is launched with N thread-blocks, each
with 32 threads. The M dimension is used to independently
change the size of the data set being investigated. The loop
structure in listing 4 has been designed to control data move-
ment of the x and y arrays on CPUs and GPUs: the outer
loop controls the number of times the memory is transferred
between host and device while the inner loop controls the
number of times the data set is consecutively accessed on
the GPU, either on a page-level granularity when allocated
via managed memory or on a cache-level granularity when
allocated via UVM.

The data is returned to the CPU through the implementation
of Listing 5.

Listing 5: Benchmark code
//The kernel touches data on CPU
void TouchOnCPU(double *y)
{
int i = 0, j = 0;
for(i=0; i<N; ++i)
for(j=0; j<M; ++j)
y(i,j) -= 0.5;

}

This is a simple calculation performed on every point in the
y array to ensure the data has fully returned to the host before
continuing.

III. RESULTS

The results presented in this section are collected on the
Summit supercomputer [1] from Oak Ridge National Labora-
tory (ORNL). A Summit node is comprised of two sockets,
each containing one IBM Power9 CPU [5] and three NVIDIA
Volta GPUs (V100) [6]. The Power9 CPUs and NVIDIA GPUs
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Figure 1: Varying the number of CPU memory touches (outer),
using 2 consecutive kernel calls. (inner).

are connected via high speed NVLink. Each of the V100 GPUs
has 16GB of high bandwidth memory and 6MB of L2 cache
shared between its 80 Streaming Multiprocessors (SM). Each
SM has a 128KB block of memory that is divided among the
L1 cache and shared memory [8].

The study begins by exploring the conditions under which
each memory space is preferable in III-A. Later we discuss
the effects of prefetching in III-B.

A. UVM vs Managed

First, UVM and managed memory are examined for differ-
ent memory movement strategies by changing the size of the
inner and outer loops. The inner loop controls the the number
of times a memory location is accessed on the device before
being updated on the host. Meanwhile, the outer loop controls
the number of times a memory location is transferred between
host-and-device.

Each of these tests are performed for a variety of data
sizes. In the results, the X-axis represents the number of inner
or outer accesses whereas the Y-axis represents the time of
the loop structure shown in Listing 3. Data size refers to
the amount of data accessed by each of the thread-blocks,
data size=M*sizeof(double).

1) Varying the number of host-to-device transfers: The
effect of increasing the number of host-to-device data transfers
was tested by fixing the inner loop to 2 and 4 and varying the
size of the outer loop. The results are shown in Figures 1 and
2.

From figure 1 and 2 we can conclude that UVM consistently
performs better when only 2 consecutive GPU kernel calls
are performed before the data is accessed back on the CPU.
However, when the GPU kernel is called for 4 consecutive
times, managed memory is better than UVM for data sets
that are bigger than a cache-line. This implies that managed
memory is better for larger data sets and for applications which
execute atleast 4 GPU kernels on a given block of memory
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Figure 2: Varying the number of CPU memory touches (outer),
using 4 consecutive kernel calls. (inner).
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Figure 3: Varying the number of consecutive kernel calls
(inner), using 2 CPU memory touches. (outer).

before the updated memory locations are accessed back on the
CPU.

2) Varying the number of consecutive GPU kernel calls:
In this section we explore the effects of increasing the number
of consecutive GPU kernel calls by fixing the outer loop
to 2 and varying the size of the inner loop. The results
are given in Figure 3. The relative performance of managed
memory improves as the number of consecutive kernel calls
is increased. As shown in Figure 3a, when the data accessed
by each thread-block is less than the cache line size, UVM is
better than managed memory for a least the first 10 consecutive
GPU kernel calls. But the figure also shows that managed
memory will overtake UVM with respect to performance after
approximately 12-13 consecutive GPU kernel calls. As the
data size increases, the GPU kernel needs to be ran far fewer
times for managed memory to overtake UVM. This is because
managed memory works on the size of a memory page while
UVM works on cache lines, resulting in far more data misses
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Figure 4: Prefetching effect on GPU Kernel performance with
2 outer calls.

in UVM. A rough estimate of the number of data misses for
each of the memory allocation scenarios is given by Equations
2 and 3.

UVM misses ≈ data size/cacheline size (2)

managed misses ≈ data size/page size (3)

Since a cache line size on a Volta is 128 bytes and the page
size is 4KB, UVM is expected to have approximately 32
times more misses than managed memory, leading to poor
performance for UVM that worsens as the size of the data set
increases.

B. UVM vs managed when provided with prefetch hints

This section explores the effect of adding the prefetching
hints to both UVM and managed memory. Prefetching in-
forms the run-time that the data is available for asynchronous
prefetching and may allow for additional optimizations on
the number and timing of data transfers. In the case of this
DAXPY benchmark, the prefetching informs the CUDA run-
time that we will require the entire x and y arrays on the device,
so the run-time is expected to copy the entire data structures
to the device when the first element is accessed.

1) Prefetch Effect on Managed Memory and UVM: Fig-
ure 4 compares the performance of the GPU kernels when
both UVM and managed memory allocation techniques are
provided with prefetch hints. For this test, outer is fixed
at 2. The performance comparison in Figure 4 shows that
if both memory management techniques are provided with
prefetch hints and the memory is not toggled more than
two times between CPU-GPU, UVM+prefetch has the best
performance for GPU kernels. It is also interesting to note
that prefetching has only a small effect on managed memory.
Another observation is that while the initial cost is higher in
case of managed and managed+prefetch, after that the slope
remains constant for all three techniques.
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Figure 5: Prefetching with a varying number of CPU memory
touches (outer), using 2 consecutive kernel calls (inner).

2) Vary the number of host-to-device transfers with
prefetching: Figure 5 shows the effects of prefetch on the
performance of UVM and managed memory for a varying
number of host-to-device transfers.

From figure 4 and figure 5, we can observe that UVM with
prefetching hints is consistently better for GPU kernels of all
data sizes and not just for cases with a minimum number
of CPU accesses. Additionally, the relative benefits of UVM
with prefetch hints increase with the amount of data accessed
by each thread-block. While the prefetching hints should
benefit both managed and UVM memory allocation strategies,
additional work is underway to understand the reason for the
superior performance benefits observed by UVM compared to
managed memory.

C. Effect of prefetching for the TouchOnCPU performance

Additional insights into the effects of prefetching can be
gained by exploring the impact on accessing the data provided
with the prefetch hints for GPU on the CPU. In this section,
we explore the performance of the TouchOnCPU function us-
ing UVM, UVM+prefetching and managed+prefetching. The
overall time of the benchmark, i.e., the sum of the GPU and
the TouchOnCPU kernel times, is also examined.

Figure 6 shows the time taken by TouchOnCPU with 2
device-to-host data transfers and 10 consecutive GPU kernels.
The TouchOnCPU performance does not change if the number
of consecutive GPU kernels is varied, so the number of GPU
calls was chosen to show useful results. The size of memory
accessed inside each of the thread-blocks varies along the X-
axis and the time taken by TouchOnCPU is shown on the
Y-axis in microseconds.

Figure 6 shows us that there is a drastic increase in the time
taken by the TouchOnCPU routine when we use prefetch hints
with UVM and the difference increases with increasing data
sizes. This effect becomes consistently worse as the number
of TouchonCPU calls increases.
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On the other hand, prefetching has very little effect on
CPU performance when using managed memory. Comparing
Figures 6 and 4 shows that managed memory has gained
benefits in both CPU and GPU kernel run-times when provided
with the prefetching hints, suggesting managed memory may
be more performant on the code as a whole as the number
of data transfers increases. This can be explored by plotting
the total benchmark time, including both GPU and CPU data
transfers.

Figure 7 shows the total timings of the benchmark when we
compare UVM and managed memory, with and without the
prefetching hints. The number of consecutive GPU kernel calls
are set to 10 and the number of device-to-host data transfers
set to two to be consistent with the previous plot.

Figure 7 shows that managed memory with prefetching
yields the best performance whereas UVM with the same hints
performs worst. Unfortunately, the improved performance of
UVM+prefetch on the GPU kernel is overshadowed by the

decreased performance in TouchOnCPU. Work is ongoing to
determine the cause of this performance loss, but the current
assumption is that when UVM is provided with prefetch hints,
the data is left on the device and only moved back at cache
line granularity when accessed in the TouchOnCPU function.
Essentially, we suspect that when provided with prefetch hints,
UVM performs exactly the opposite of what it does without
the hint. The number of device-to-host transfers is also being
explored to understand how the data transfers happen in each
of the cases.

IV. SUMMARY OF RESULTS

The performance of GPU kernels using UVM and managed
memory with and without prefetching was assessed.

• UVM shows better performance when the data accessed
on the GPU is closer to cache line size rather than page
size.

• UVM without prefetching shows better performance
when data is accessed on the CPU frequently and GPU
reuse is minimial.

• Providing prefetching hints greatly improves the perfor-
mance of UVM on GPU but show substantial penalties
on the CPU.

• Prefetching hints are beneficial for managed memory on
both CPU and GPU performance.

V. CONCLUSION

In this paper we devised a benchmark to study the per-
formance of UVM provided through ATS versus managed
memory allocated via cudaMallocManaged on an NVIDIA
GPU DAXPY kernel. The benchmark was designed to test the
performance of the GPU kernels when memory is transferred
between host and device on the granularity of page size
versus cache line size. It was observed that although managed
memory allocation performed better in most cases, UVM is
beneficial for data transfers on the order of a cache line
or when data is returned to the CPU often. The benefits
of prefetching were also explored. Managed memory shows
consistent improvment when using prefetching. UVM shows
substantial GPU improvement from prefetching, but CPU per-
formance is substantially reduced. Overall, managed memory
tends to be a better memory allocation strategy when the data
transfers back to the CPU are also taken into consideration.
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