SC19 Proceedings

The International Conference for High Performance Computing, Networking, Storage, and Analysis

Abstract: The analysis of runtime performance is important during the development and throughout the life cycle of HPC applications. One important objective in performance analysis is to identify regions in the code that show significant runtime increase with larger problem sizes or more processes. One approach to identify such regions is to use empirical performance modeling, i.e., building performance models based on measurements. While the modeling itself has already been streamlined and automated, the generation of the required measurements is time consuming and tedious. In this paper, we propose an approach to automatically adjust the instrumentation to reduce overhead and focus the measurements to relevant regions, i.e., such that show increasing runtime with larger input parameters or increasing number of MPI ranks. Our approach employs Extra-P to generate performance models, which it then uses to extrapolate runtime and, finally, decide which functions should be kept for measurement. Also, the analysis expands the instrumentation, by heuristically adding functions based on static source-code features. We evaluate our approach using benchmarks from SPEC CPU 2006, SU2, and parallel MILC. The evaluation shows that our approach can filter functions of little interest and generate profiles that contain mostly relevant regions. For example, the overhead for SU2 can be improved automatically from 200% to 11% compared to filtered Score-P measurements.






Back to Workshop on Programming and Performance Visualization Tools (ProTools) Archive Listing


Back to Full Workshop Archive Listing